2 минут чтения
28 августа 2020 г.
Дашборды умерли
Перевод статьи «Dashboards are Dead»
Дашборды были главным оружием распространения данных в течение последних нескольких десятилетий, но мир не стоит на месте. Чтобы восприятие данных стало доступнее, нам следует переосмыслить текущие инструменты, а ответ может оказаться ближе, чем нам кажется.
Hello Dashboard, my old friend
На старте карьеры я работала в крупной технологической компании. Компания только-только приобрела свой первый инструмент для создания дашбордов, и наша команда отвечала за захватывающий переход от устаревших spreadsheets и отчетов SSRS к новым ярким дашбордам.
Переход от spreadsheets к дашбордам стал значительным шагом в нашем росте как аналитиков. Продуманный дизайн и интерактивность дашбордов резко снизили «стоимость доступа» к данным. Представьте, вы прогуливаетесь по офису и видите сотрудников любой должности и любого опыта, которые возятся с дашбордами. Это рай для любителей данных, правда?
Не совсем. Вскоре мы обнаружили, что дашборды приносят с собой ряд новых проблем:
1. Как? У вас ещё нет дашборда?! Неожиданно повсюду появились дашборды. Инженеру нужны данные для специального анализа? Вот дашборд. У вице-президента будет презентация на следующей неделе и ему нужны диаграммы? Она получает дашборд. А что происходит дальше? О нём просто забывают. Такой шаблонный подход истощал время, ресурсы и мотивацию нашей команды. Это уникальное деморализующее чувство — наблюдать, как ещё один из ваших дашбордов забросили быстрее, чем профиль MySpace в 2008 году.
2. Смерть от 1000 фильтров. После того, как новый дашборд заработал, нас сразу же заваливали запросами на новые представления, фильтры, поля, страницы (напомните мне рассказать вам о том, как я увидела 67-страничный дашборд). Было ясно: дашборды не отвечали на все вопросы, что было либо неудачей на этапе разработки, либо неспособностью инструментов дать ответы, в которых нуждались люди. Что ещё хуже, мы выяснили, что люди использовали все эти фильтры, чтобы экспортировать данные в Excel и уже там работать с ними ?♀️
3. Не мой дашборд. Постепенно шумиха вокруг дашбордов начала сходить на нет, люди начали пренебрегать ими и откровенно игнорировать их. Многие видели в них угрозу для своей работы, и если они встречали неожиданные цифры, то списывали всё на «плохие данные». У нас на работе были серьёзные проблемы с доверием между людьми, и дашборды только усугубляли положение. В конце концов, мы ведь не могли отправлять другим наши SQL-запросы для получения данных: люди бы просто не смогли не только прочитать их, но даже понять ту сложную схему, по которой они работают. И тем более мы не могли отправлять другим командам необработанные данные. Итак, у нас была просто огромная, наболевшая, серьезная проблема с доверием.
Реальный пример: что это за странная красная точка на карте?
Для примера давайте рассмотрим дашборд, который стал широко популярен во время пандемии — панель мониторинга коронавируса университета Джона Хопкинса.
Дашборд привлекателен визуально. Красный и чёрный вызывают чувство строгости и важности с первого взгляда. По мере того, как взгляд останавливается на странице, мы сталкиваемся с числами, точками разного размера и графиками, которые почти всегда направлены вправо-вверх. У нас осталось ощущение, что всё плохо, и, кажется, становится ещё хуже. Этот дашборд был создан с целью получения данных доступным и интересным способом. Возможно, он даже был разработан, чтобы ответить на несколько ключевых вопросов: «Сколько новых случаев было сегодня в моей стране? А в моём регионе?». Безусловно, это намного лучше, чем если бы они просто разместили таблицу или ссылку для скачивания.
Но кроме этих поверхностных выводов мы не можем сделать с данными ничего. Если бы мы хотели использовать данные для определенной цели, у нас не было бы необходимого контекста вокруг этих цифр, чтобы сделать их полезными и доверять как своим собственным. Например, «Когда в моей стране или в моём регионе начали действовать меры социального дистанцирования? Насколько доступны тесты в моей стране?». И даже если бы нам каким-то образом удалось получить этот контекст, чтобы доверять этим числам самому дашборду не хватает гибкости для проведения самостоятельного анализа.
Как и в моём опыте работы в компании, имя которой я не называю, этот дашборд позволяет людям делать что-то с данными, но вовсе не что-то значимое. В указанной неназванной компании мы пытались решать эту проблему, добавляя всё больше и больше дашбордов, а затем добавляя всё больше и больше фильтров к этим дашбордам, а затем убивая эти дашборды, когда они становились бесполезными. Эта отрицательная обратная связь способствовала серьёзному недоверию к данным и межгрупповым расколам, многие из которых, как я полагаю, всё ещё существуют, если верить пассивно-агрессивным обновлениям статусов на LinkedIn.
Дашборды расширили возможности обработки данных, но они определенно не являются оптимальным интерфейсом для совместной работы с данными и создания отчётов. К счастью, есть претендент, который вы, возможно, уже используете…
Данные в портретном режиме
Блокноты с данными, такие как Jupyter, стали очень популярными за последние несколько лет в области Data Science. Их технологическая направленность оказалась лучше традиционных скриптовых инструментов для Data Analysis и Data Science. Это не только полезно для аналитика, выполняющего работу, но также помогает начальнику, коллеге, другу, который вынужден этим пользоваться.
По сути, блокноты обеспечивают:
1. Доверие процессу, потому что пользователи буквально видят код и комментарии автора
2. Возможность ответить на любой вопрос, при условии, что пользователь знает язык, на котором написан код
3. Сотрудничество между группами и представление решений с более широкой аудиторией
Я, конечно, не первая, кто хочет применить мощь и гибкость блокнотов в области анализа данных или бизнес-аналитики, и мы поговорили с рядом компаний, которые используют их вместо дашбордов. Некоторые используют только Jupyter для своих отчётов, другие вырезают и вставляют диаграммы оттуда в текстовый редактор для аналогичного эффекта. Это не совершенные решения, но это признак того, что компании готовы отказаться от тщательно продуманных дашбордов, чтобы попробовать преимущества блокнотов.
Нам просто нужен способ вынести эту идею за пределы Data Science и сделать блокнот таким же доступным, как и дашборды.
Блокноты в массы
В Count мы настолько верим в преимущества блокнотов, что создали платформу для анализа данных на их основе. Народ, больше никаких дашбордов!
Чтобы использовать их за пределами Data Science, нам пришлось создать собственную версию, но фундаментальные принципы всё ещё применимы с некоторыми дополнительными преимуществами…
Создан для любого уровня опыта
1. Нет необходимости учить всех в вашей команде Python или SQL, поскольку запросы можно создавать по принципу drag-and-drop, используя «составной запрос» SQL или написания запроса с нуля.
2. Стройте графики и диаграммы одним щелчком мыши, без сложных пакетов визуализации или программного обеспечения
3. Автоматическое объединение таблиц и результатов запроса, нет необходимости писать сложные объединения или пытаться объяснить схему
Collaboration-enabled
1. Делитесь блокнотами с товарищем по команде, всей командой или тем, у кого есть ссылка
2. Добавляйте комментарии и выноски, чтобы сделать документ действительно общим
Взяв лучшее от блокнотов, Count обеспечивает мощность, прозрачность и взаимодействие, необходимое командам, чтобы не просто сообщать людям цифры, а давать возможность получать нужную информацию и делиться ею с остальной частью компании. В процессе создания Count мы работали с рядом организаций, чтобы посмотреть, как блокноты меняют способ взаимодействия с данными в команде. Вот, что мы обнаружили:
1. Аналитики используют блокноты вместо SQL-скриптов для создания нескольких базовых таблиц, которые используют другие команды. Эти блокноты доступны для просмотра всем, что решает проблему доверия в команде
2. Команда по работе с данными создаёт несколько базовых отчётов. Эти отчёты полны комментариев, которые помогут читателю лучше понять, как интерпретировать числа и какие соображения следует принять
3. Затем пользователи делают fork этих дата-блокнотов или создают свои собственные. Они делятся этими блокнотами с Data Team, чтобы они могли помочь им, а затем и с другими подразделениями компании
Поскольку всё используется всеми и находится в одном месте, проблемы с доверием начинают решаться. В результате вы не строите дашборды для людей, которые их не используют, не создаются тысячи фильтров для удовлетворения любых потребностей, поскольку у людей больше возможностей для создания полноценных отчётов, которые им действительно нужны. Небольшой переход от дашборда к блокноту может существенно повлиять на то, как ваша команда использует данные.
[ Рекомендации ]
Читайте также
1 минута чтения
20 сентября 2022
[ Связаться ]
Давайте раскроем потенциал вашего бизнеса вместе
Заполните форму на бесплатную консультацию