Как и для чего экспортировать красивые отчеты из Jupyter Notebook в PDF - LEFT JOIN

Свяжитесь с нами в любой удобной для вас форме

Менеджер

Написать в телеграмм

Онлайн
Телеграмм
или
Заполните форму

2 минут чтения

*

8 октября 2021 г.

Как и для чего экспортировать красивые отчеты из Jupyter Notebook в PDF

Если вы специалист по анализу данных и вам нужно представить отчет для заказчика, если вы ищете работу и не знаете, как оформить тестовое задание так, чтобы на вас обратили внимание, если у вас много учебных проектов, связанных с аналитикой и визуализацией данных, то сегодняшний пост будет вам очень и очень полезен. Дело в том, что смотреть на чужой код в Jupyter Notebook бывает проблематично, ведь результат часто теряется между множеством строк кода с подготовкой данных, импортом нужных библиотек и серией попыток реализовать ту или иную идею. Именно поэтому такой метод, как экспорт результатов в PDF-файл в формате LaTeX — это отличный вариант для итоговой визуализации, который сэкономит время и будет выглядеть презентабельно. В научных кругах статьи и отчеты очень часто оформляются именно с использованием LaTeX, поскольку он имеет ряд преимуществ:

  • Математические уравнения и формулы выглядят аккуратнее.
  • Библиография создается автоматически, на основе всех использованных в документе ссылок.
  • Автор может сосредоточиться на содержании, а не на внешнем виде документа, так как верстка текста и других данных происходит автоматически с помощью указания необходимых параметров в коде.

Сегодня мы подробно расскажем о том, как научиться экспортировать вот такие красивые отчеты из Jupyter Notebook в PDF с использованием LaTeX.

Установка LaTeX

Самый важный момент в формировании отчета из Jupyter Notebook на Python — это его экспорт в финальный файл. Для этого применяется одна библиотека — nbconvert — которая конвертирует ваш ноутбук в любой удобный формат документа: pdf (как в нашем случае), html, latex или другой. Эту библиотеку нужно не просто установить, а провести некоторую процедуру по предустановке нескольких других пакетов: Pandoc, TeX и Chromium. По ссылке на библиотеку весь процесс описан очень подробно для каждого программного обеспечения, поэтому подробно мы на нем останавливаться не будем.

Как только вы завершили все предварительные шаги, нужно установить и импортировать библиотеку в ваш Jupyter Notebook.


!pip install nbconvert

import nbconvert

Экспорт таблиц в Markdown формат

Обычно, таблицы не представляют в отчетах, поскольку их бывает трудно быстро прочесть, но иногда все-таки необходимо добавить небольшую таблицу в итоговый документ. Для того, чтобы таблица выглядела аккуратно, нужно представить ее в Markdown формате. Это можно сделать вручную, но если в таблице много данных, то лучше придумать более удобный метод. Мы предлагаем использовать следующую простую функцию pandas_df_to_markdown_table(), которая преобразует любой датафрейм в markdown-table. Единственный нюанс: после преобразования исчезают строчные индексы, потому, если они важны (как в нашем примере), то стоит записать их в переменную в первой колонке датафрейма.


summary = round(data_g.describe(),2)

summary.insert(0, ‘metric’, summary.index)

# Функция для преобразования dataframe в Markdown Table

def pandas_df_to_markdown_table(df):

    from IPython.display import Markdown, display

    fmt = [‘—‘ for i in range(len(df.columns))]

    df_fmt = pd.DataFrame([fmt], columns=df.columns)

    df_formatted = pd.concat([df_fmt, df])

    display(Markdown(df_formatted.to_csv(sep=»|», index=False)))
    data_g = px.data.gapminder()
    pandas_df_to_markdown_table(summary)

Экспорт изображения в отчет

В этом примере мы будем строить bubble-chart, про методику построения которых рассказывали в недавнем посте. В прошлый раз мы использовали пакет Seaborn, наглядно показывая, что отображение данных размером кругов на графике происходит корректно. Такие же графики можно построить и при помощи пакета Plotly.

Для того чтобы отобразить график, построенный в Plotly в отчете тоже нужно немного постараться. Дело в том, что plt.show() не поможет отобразить график при экспорте. Поэтому, нужно сохранить получившийся график в рабочей директории, а затем, используя библиотеку iPython.display, отобразить его с помощью функции Image().


from IPython.display import Image

import plotly.express as px

fig = px.scatter(data_g.query(«year==2007″), x=»gdpPercap», y=»lifeExp»,

                 size=»pop», color=»continent»,

                 log_x=True, size_max=70)

fig.write_image(‘figure_1.jpg’)

Image(data = ‘figure_1.jpg’, width = 1000)

Формирование и экспорт отчета

Когда все этапы анализа данных завершены, отчет можно экспортировать. Если вам нужны заголовки или текст в отчете, то пишите его в ячейках ноутбука, сменив формат Code на Markdown. Для экспорта можно использовать терминал, запуская там вторую строку без восклицательного знака, либо можно запустить код, написанный ниже, в ячейке ноутбука. Мы советуем не загружать отчет кодом, поэтому используем параметр TemplateExporter.exclude_input=True, чтобы ячейки с кодом не экспортировались. Также, при запуске этой ячейки код выдает стандартный поток (standard output) и, чтобы в отчете его не было видно, в начале ячейки нужно написать %%capture.


%%capture

!jupyter nbconvert —to pdf —TemplateExporter.exclude_input=True ~/Desktop/VALIOTTI/Reports/SampleLaTeX Report.ipynb

!open ~/Desktop/VALIOTTI/Reports/Sample LaTeX Report.pdf

Если вы все сделали верно и методично, то в итоге получится вот такой отчет! Презентуйте данные красиво 🙂

2176 просмотров

Добавить комментарий

[ Рекомендации ]

Читайте также

2 минут чтения

*

6 августа 2020

Как построить красивый waterfall chart в Python?

1 минута чтения

*

20 октября 2020

Анимируем теннисные мячики в Tableau

1 минута чтения

*

21 января 2021

Funnel chart в Tableau

[ Дальше ]