Valiotti Analytics — построение аналитики для мобильных и digital-стартапов
    DataMarathon.ru — семидневный интенсив в области аналитики для начинающих
10 заметок с тегом

tableau

Анализ альбомов Земфиры: дашборд в Tableau

Время чтения текста – 2 минуты

В марте мы опубликовали исследование «Python и тексты нового альбома Земфиры: анализируем суть песен», в котором при помощи Word2Vec-модели проанализировали близость песен альбома «бордерлайн» и получили самые близкие слова по духу альбома — ими оказались «пламень», «гореть», «тоска», «печаль», «сердце», «солнце» и другие.

Мы продолжили работу над альбомами Земфиры и проанализировали семь из них, а затем результаты собрали в один дашборд и опубликовали его в Tableau Public. Посмотрите, что получилось.

Заглавная страница — общий анализ семи альбомов Земфиры. Переключиться на конкретный альбом можно по нажатию на его иконку внизу страницы. Для каждого альбома представлена матрица семантической близости песен, облако слов и топ схожих слов для альбома.

 Нет комментариев    842   28 дн   Data Analytics   python   tableau   земфира

Бот для преобразования данных из Coinkeeper

Время чтения текста – 6 минут

Coinkeeper — кроссплатформенное приложение для учёта финансов. Внутри можно выпустить виртуальную банковскую карту Visa с бесплатным годовым обслуживанием, которая будет присылать уведомления, если вы тратите больше, чем запланировали. Помимо уведомлений, приложение ведёт историю трат и позволяет выгрузить сводный отчёт в формате csv. Данные, которое выгружает приложение ещё не готовы к анализу и выглядят так:

Азат Шарипов сделал скрипт обработки данных в пригодный для Tableau вид и подготовил Tableau Public книгу, а Рома Бунин в рамках своего проекта «Переверстка» переработал дашборд.

Мы решили тоже поучаствовать, и с нашей стороны Елизавета Мазурова сделала чат-бота.

Чат-бот крутой! Помимо того, что он может как и прежде отдавать обратно .csv-файл, он позволяет автоматизировать рутину по обновлению отчета через Google-таблицы. Как, наверное, многие помнят, Tableau Public может работать на гугл-таблицах или csv файлах, но не разрешает подключение к данным. Бот умный: он создаст за вас гугл-таблицу и когда вы повторно отправите ему новый файл обновит ее.

Использование бота

Перейдите в диалог с ботом и введите команду /start — в ответе бот расскажет немного о себе. Для продолжения работы нажмите на кнопку «Начать».

Сразу после можно отправить csv-файл, выгруженный из Coinkeeper:

Выберите тип файла — csv или таблицу в Google Spreadsheets.

В случае выбора csv-файла бот пришлёт его:

А в случае ссылки в первый раз нужно будет пройти небольшую регистрацию — указать почту и наименование для файла.

Затем бот пришлёт ссылку на файл:

Скрипт преобразовал данные, и таблицу можно указать в качестве источника данных в Tableau. А благодаря тому, что в случае загрузки нового файла создаётся не новая таблица, а обновляется старая, отчёт в Tableau тоже обновится. В результате открывается возможность еженедельно присылать боту новую таблицу и сразу переходить в обновлённый отчёт.

Radial pie в Tableau

Время чтения текста – 11 минут

Как-то раз на просторах YouTube мы нашли вот такое видео с гайдом по Radial Pie в Tableau:

Нам очень понравилась реализация — диаграмма сильно напоминает кольца активности Apple Watch. Но, к сожалению, по задумке графика кольца останавливаются на 270 градусах. Показываем, как сделать максимально приближенную к кольцам активности реализацию.

Кольца активности в Apple Watch

Подготовка данных

Данная визуализация является весьма спорной в контексте бизнес-дашбордов

Загрузим датасорс в Tableau. Наши кольца — это круги из 360 точек, и для каждой нам нужно своё наблюдение. Это легко реализовать при помощи Bins: сначала перетянем файл под поле с этим же файлом, чтобы объединить датасет с самим собой. В результате датасет должен «удвоиться» и появится новое поле с наименованием файла.

Создадим новое вычисляемое поле и назовем его Path.

Затем перейдём на график. Кликнем правой кнопкой мыши по Path из раздела Measures и создадим из этого поля Bins. Size of bins установим на единицу:

Создадим новое вычисляемое поле Index:

И поле Percentage, которое отобразит, насколько выполнены цели. Если достижение по цели будет больше самой цели, мы отобразим 1, чтобы не появлялись значения больше единицы.

Теперь создаём следующие меры:

wc_start — мера начальной координаты каждого кольца. Она считается по полю Order, соответственно, у Stand Order равен 1, а значит начинаться это кольцо будет раньше всех, в точке 1 по OY. У кольца Exercise Order равен 2, оно будет в середине. У Move Order равен 3 — это кольцо будет внешним и начнётся в точке 3.

percentage_label — мера для Label, в которой записано процентное отношение достижения по цели к самой цели:

Y2 — вспомогательная мера для начальных точек колец:

Наконец, финальные поля X и Y. Если значение меньше 360, мы описываем при помощи синуса внутреннюю линию кольца, если больше — то внешнюю линию, иначе — острие, на котором кончается кольцо. Формула вычисления Y аналогична X, но считаем не синус, а косинус.

Визуализация

Измерение Path (bin) перетянем в поле Detail, X — в Columns, а Y — в Rows. X и Y должны вычисляться при помощи Path:

Тип графика сменим с Automatic на Polygon и перетянем меру Index в поле Path. Поле Description перетягиваем в Color.

Меру Y2 тоже перетягиваем в Rows и устанавливаем для оси Dual Axis. Из All в Marks необходимо удалить Measure Names. Правой кнопкой мыши кликаем на ОY и синхронизируем оси:

Для Y2 устанавливаем тип Circle и корректируем размер:

Работа над оформлением

В Tableau есть возможность самому подобрать нужную гамму. Для жмём на Colors, затем на Edit colors, выбираем нужное поле и указываем цвет. Для гаммы колец из WatchOS мы подобрали такие цвета:

  1. Красный: rgb(229, 54, 83)
  2. Зелёный: rgb(186, 252, 79)
  3. Синий: rgb(117, 229, 228)

В Label Y2 перетягиваем поля Description и percentage_label. Устанавливаем выравнивание, Description выделяем жирным цветом, ставим галочку в Options у поля Allow labels to overlap other marks, чтобы Label был виден:

Скрываем все линии, границы и индикатор, заливаем фон чёрным цветом. Результат — такая диаграмма:

Книга и таблица из примера доступны в нашем репозитории на GitHub.

 Нет комментариев    217   6 мес   bi   BI-инструменты   tableau

Funnel chart в Tableau

Время чтения текста – 13 минут

Диаграмма в виде воронки — хороший выбор визуализации, если стоит задача отобразить достижение целей по ряду этапов. Сегодня мы посмотрим, как получить такую диаграмму в Tableau.

Таблица из примера доступна в нашем репозитории на GitHub

Данные должны быть представлены в следующем виде, и если вы получаете их при помощи Custom SQL Query, вам может быть полезен наш последний материал: «UNPIVOT данных с использованием CROSS JOIN».

В таблице из примера мы получим 6 разных этапов: Identify, Pursue, Contact, Proposal, Negotiation и Won. Для каждого нужно задать соответствующее вычисляемое поле: например, ниже описана формула для вычисляемого поля статуса Identify.

if ATTR([Status]) = 'Identify' or LOOKUP(ATTR([Status]), -1)="Identify" then SUM([Value]) END

Итого должно получиться 6 новых мер:

Перетяните Measure Values в верхнюю часть графика: должен получиться такой bar chart:

Над графиком в выпадающем меню отображения графиков поменяйте Standart на Entrie View — график должен в ответ расшириться:

Из Measure Values удалите меры CNT(Sheet) и SUM(Value), которые не относятся к воронке:

Измерение Status перенесите в поле Rows. Получится несколько столбиков — это и есть будущие этапы воронки:

Убедитесь, что все вычисляемые поля вычислены при помощи Table (down):

А Stack marks установлен на off:

Смените тип графика на Area:

Чтобы каждый этап был окрашен в собственный цвет, перенесите измерение Status в поле Color:

В фильтре Status справа отсортируйте этапы по убыванию, перетягивая левой кнопкой мыши в нужное место:

Зажав клавишу CMD на MacOS или Ctrl на Windows, зажмите левой клавишей мыши Measures Values в поле Columns и протяните в область рядом: должно появиться такое же, а на графике с воронкой рядом должен появиться идентичный график.

Нажмите на ось X у левого графика и перейдите в меню Edit Axis. В разделе Scale поставьте галочку на поле Reversed, чтобы «отзеркалить» левый график.

Получится такая диаграмма:

Поработаем над оформлением. Нажмите правой кнопкой мыши на область с наименованием этапов слева и поставьте галочку напротив «Show Header». Проделайте то же самое с осью внизу:

Скройте также индикатор внизу:

Нажмите правой кнопкой мыши по графику и перейдите в раздел Format. Перейдите в меню Format Lines и смените значение для каждого типа линий на None. В соседнем разделе Format Borders также везде установите None:

Затем перенесите измерение Status и меру Value в поле Label. Нажмите на SUM(VALUE) и перейдите в Add Table Calculation, чтобы добавить ещё процент от первого этапа. В поле Calculation Type выберите «Percent From», а в поле Relative to — «First». Чтобы отобразить на каждом этапе процент от предыдущего: нажмите правой кнопкой мыши по мере SUM(Value) и нажмите на Add Table Calculation. В поле Calculation Type выберите «Percent From», а в поле Relative to — «Previous».

После нажмите на Label, перейдите в Edit Label и расположите текст с процентным соотношением под статусом:

Выравнивание установите, как на скриншоте:

Ещё перенесите в Tooltip меру Value, чтобы отображать в нём абсолютные значения. Затем нажмите на Tooltip и поменяйте форматирование:

В итоге получится такой график, у которого в подсказках отображается значение по этапу, процент от прошлого этапа и процент от первого этапа:

На написание этой статьи нас вдохновил анлоязычный видеорецепт.

 Нет комментариев    370   6 мес   Data Analytics   funnel   tableau

UNPIVOT данных с использованием CROSS JOIN

Время чтения текста – 5 минут

Зачастую мы получаем данные в предагрегированном виде, когда каждая отдельная колонка является посчитанной метрикой. По аналогии мы получаем подобный результат, когда строим сводную таблицу в Excel и используем некоторое количество фактов для агрегации. Но что делать, если нам нужно произвести обратную операцию — Unpivot?

Как поступить, если в датасете понадобилось трансформировать данные в реляционный вид? В Tableau есть фича Unpivot, которая сделает всё сама: если датасет построен из файла, достаточно выделить нужные колонки и нажать на кнопку «Pivot». А в некоторых диалектах SQL, например, в Transact, уже есть встроенные функции, которые тоже делают это сами.

Но в случае, если датасет построен на Custom SQL Query из базы данных, у которой в арсенале отсутствуют встроенные функции для трансформации в сводную и обратно, необходим какой-то другой подход, и Tableau порекомендует для такой таблицы:

ID a b c
1 a1 b1 c1
2 a2 b2 c2

Воспользоваться таким стандартным универсальным, но не очень эффективным решением:

select id, ‘a’ AS col, a AS value
from yourtable
union all
select id, ‘b’ AS col, b AS value
from yourtable
union all
select id, ‘c’ AS col, c AS value
from yourtable

И в результате получить таблицу вида:

id col value
1 a a1
2 a a2
1 b b1
2 b b2
1 c c1
2 c c2

Порой, когда мы работаем с физической таблицей и нам надо быстро получить результаты для двух-трех колонок, действительно, подобное решение можно быстро применить, не задумываясь. Однако в случае, когда вместо таблицы содержится, например, сложный подзапрос с несколькими джойнами и нужно сделать Pivot для 5+ колонок, подзапрос вызовется целых 5+ раз, согласитесь, не очень действенно считать одно и тоже неоднократно. Вместо этого можно воспользоваться рецептом с CROSS JOIN, найденным на просторах Stack Overflow:

select t.id,
c.col,
    case c.col
        when 'a' then a
        when 'b' then b
        when 'c' then c
    end as data
from yourtable t
cross join
(
    select 'a' as col
    union all select 'b'
    union all select 'c'
) c

Разберём запрос подробнее. CROSS JOIN — перекрёстное соединение, декартово произведение, или, проще говоря, произведение всех строк со всеми. За ненадобностью в синтаксисе CROSS JOIN отсутствует ON — мы объединяем не по какому-то конкретному полю две таблицы, а сразу по всем существующим строкам.

Сначала мы формируем таблицу со всеми колонками, предназначенными для преобразования в строки. В нашем случае это колонки a, b и c: поэтому мы сделали таблицу c, в которой будет колонка col со значениями a, b и c:

(
    select 'a' as col
    union all select 'b'
    union all select 'c'
) c

Выглядит она так:

col
a
b
c

Затем таблицы yourtable и c объединятся перекрестным соединением, а после мы возьмём поля id, col и в зависимости от того, как называется ячейка в col, подставим соответствующие данные в поле data.

select t.id,
c.col,
    case c.col
        when 'a' then a
        when 'b' then b
        when 'c' then c
    end as value
from yourtable t
cross join
(
    select 'a' as col
    union all select 'b'
    union all select 'c'
) c

В итоге получим ту же самую искомую таблицу, с которой уже можно удобно работать любым аналитическим инструментом:

id col value
1 a a1
2 a a2
1 b b1
2 b b2
1 c c1
2 c c2
 Нет комментариев    96   6 мес   mysql   query   sql   tableau   лайфхак
Ранее Ctrl + ↓