20 заметок с тегом

python

Собираем топ-10 аккаунтов Instagram по теме аналитики и машинного обучения

Время чтения текста – 11 минут

В некоторых телеграм-каналах (раз, два) уже говорилось про другие интересные паблики в телеграме, однако по Instagram такого топа пока не было. Вероятно, это не самая популярная сеть для контента в нашей индустрии, тем не менее, можно проверить эту гипотезу, используя Python и данные. В этом материале рассказываем, как собрать данные по аккаунтам Instagram без API.

Метод сбора данных
Instagram API не позволит вам просто так собирать данные о других пользователях, но есть и другой метод. Можно отправить такой request-запрос:

https://instagram.com/leftjoin/?__a=1

И получить в ответе JSON-объект со всей информацией о пользователе, которую можно посмотреть самому: имя аккаунта, количество постов, подписок и подписчиков, а также первые десять постов с информацией про них: количество лайков, комментарии и прочее. Именно на таких request-запросах устроена библиотека pyInstagram.

Схема данных
Будем собирать данные в три таблицы Clickhouse: пользователи, посты и комментарии. В таблицу пользователей собираем всю информацию о них: идентификатор, наименование аккаунта, имя и фамилия человека, описание профиля, количество подписок и подписчиков, количество постов, суммарное количество комментариев и лайков, наличие верификации, география пользователя и ссылки на аватарку и Facebook.

CREATE TABLE instagram.users
(
    `added_at` DateTime,
    `user_id` UInt64,
    `user_name` String,
    `full_name` String,
    `base_url` String,
    `biography` String,
    `followers_count` UInt64,
    `follows_count` UInt64,
    `media_count` UInt64,
    `total_comments` UInt64,
    `total_likes` UInt64,
    `is_verified` UInt8,
    `country_block` UInt8,
    `profile_pic_url` Nullable(String),
    `profile_pic_url_hd` Nullable(String),
    `fb_page` Nullable(String)
)
ENGINE = ReplacingMergeTree
ORDER BY added_at

В таблицу с постами сохраняем автора поста, идентификатор записи, текст, количество комментариев и прочее. is_ad, is_album и is_video — поля, проверяющие, является ли запись рекламной, «каруселью» изображений или видеозаписью.

CREATE TABLE instagram.posts
(
    `added_at` DateTime,
    `owner` String,
    `post_id` UInt64,
    `caption` Nullable(String),
    `code` String,
    `comments_count` UInt64,
    `comments_disabled` UInt8,
    `created_at` DateTime,
    `display_url` String,
    `is_ad` UInt8,
    `is_album` UInt8,
    `is_video` UInt8,
    `likes_count` UInt64,
    `location` Nullable(String),
    `recources` Array(String),
    `video_url` Nullable(String)
)
ENGINE = ReplacingMergeTree
ORDER BY added_at

В таблице с комментариями храним отдельно каждый комментарий к записи с автором и текстом.

CREATE TABLE instagram.comments
(
    `added_at` DateTime,
    `comment_id` UInt64,
    `post_id` UInt64,
    `comment_owner` String,
    `comment_text` String
)
ENGINE = ReplacingMergeTree
ORDER BY added_at

Скрипт
Из библиотеки pyInstagram нам понадобятся классы Account, Media, WebAgent и Comment.

from instagram import Account, Media, WebAgent, Comment
from datetime import datetime
from clickhouse_driver import Client
import requests
import pandas as pd

Создаем экземпляр класса WebAgent — он необходим для вызова некоторых методов и обновления аккаунтов. В начале нам нужно иметь хотя бы названия профилей пользователей, информацию о которых мы хотим собрать, поэтому отправим другой request-запрос для поиска пользователей по ключевым словам, их список ниже в фрагменте кода. В выдаче будут аккаунты, у которых название или описание профиля совпало с ключевым словом.

agent = WebAgent()
queries_list = ['machine learning', 'data science', 'data analytics', 'analytics', 'business intelligence',
                'data engineering', 'computer science', 'big data', 'artificial intelligence',
                'deep learning', 'data scientist','machine learning engineer', 'data engineer']
client = Client(host='54.227.137.142', user='default', password='', port='9000', database='instagram')
url = 'https://www.instagram.com/web/search/topsearch/?context=user&count=0'

Проходим по всем ключевым словам и собираем все аккаунты. Так как в списке могли образоваться дубликаты, переведём список в множество и обратно в список.

response_list = []
for query in queries_list:
    response = requests.get(url, params={
        'query': query
    }).json()
    response_list.extend(response['users'])
instagram_pages_list = []
for item in response_list:
    instagram_pages_list.append(item['user']['username'])
instagram_pages_list = list(set(instagram_pages_list))

Теперь проходим по списку аккаунтов, и если аккаунта с таким наименованием ещё не было в базе, то получаем расширенную информацию о нём. Для этого пробуем создать экземпляр класса Account, передав username параметром. После при помощи объекта agent обновляем информацию об аккаунте. Будем собирать только первые 100 постов, чтобы сбор не задерживался. Создадим список media_list — он при помощи метода get_media будет хранить код каждого поста, который затем можно будет получить при помощи класса Media.


Сбор медиа аккаунта

all_posts_list = []
username_count = 0
for username in instagram_pages_list:
    if client.execute(f"SELECT count(1) FROM users WHERE user_name='{username}'")[0][0] == 0:
        print('username:', username_count, '/', len(instagram_pages_list))
        username_count += 1
        account_total_likes = 0
        account_total_comments = 0
        try:
            account = Account(username)
        except Exception as E:
            print(E)
            continue
        try:
            agent.update(account)
        except Exception as E:
            print(E)
            continue
        if account.media_count < 100:
            post_count = account.media_count
        else:
            post_count = 100
        print(account, post_count)
        media_list, _ = agent.get_media(account, count=post_count, delay=1)
        count = 0

Мы начинаем с постов и комментариев, потому что для занесения в базу нового пользователя нам нужно подсчитать сперва суммарное количество комментариев и лайков в его аккаунте. Практически все интересующие поля являются атрибутами класса Media.


Сбор постов пользователя

for media_code in media_list:
            if client.execute(f"SELECT count(1) FROM posts WHERE code='{media_code}'")[0][0] == 0:
                print('posts:', count, '/', len(media_list))
                count += 1

                post_insert_list = []
                post = Media(media_code)
                agent.update(post)
                post_insert_list.append(datetime.now().strftime('%Y-%m-%d %H:%M:%S'))
                post_insert_list.append(str(post.owner))
                post_insert_list.append(post.id)
                if post.caption is not None:
                    post_insert_list.append(post.caption.replace("'","").replace('"', ''))
                else:
                    post_insert_list.append("")
                post_insert_list.append(post.code)
                post_insert_list.append(post.comments_count)
                post_insert_list.append(int(post.comments_disabled))
                post_insert_list.append(datetime.fromtimestamp(post.date).strftime('%Y-%m-%d %H:%M:%S'))
                post_insert_list.append(post.display_url)
                try:
                    post_insert_list.append(int(post.is_ad))
                except TypeError:
                    post_insert_list.append('cast(Null as Nullable(UInt8))')
                post_insert_list.append(int(post.is_album))
                post_insert_list.append(int(post.is_video))
                post_insert_list.append(post.likes_count)
                if post.location is not None:
                    post_insert_list.append(post.location)
                else:
                    post_insert_list.append('')
                post_insert_list.append(post.resources)
                if post.video_url is not None:
                    post_insert_list.append(post.video_url)
                else:
                    post_insert_list.append('')
                account_total_likes += post.likes_count
                account_total_comments += post.comments_count
                try:
                    client.execute(f'''
                        INSERT INTO posts VALUES {tuple(post_insert_list)}
                    ''')
                except Exception as E:
                    print('posts:')
                    print(E)
                    print(post_insert_list)

Чтобы собрать комментарии необходимо вызвать метод get_comments и передать параметром экземпляр класса Media.


Сбор комментариев из поста

comments = agent.get_comments(media=post)
                for comment_id in comments[0]:
                    comment_insert_list = []
                    comment = Comment(comment_id)
                    comment_insert_list.append(datetime.now().strftime('%Y-%m-%d %H:%M:%S'))
                    comment_insert_list.append(comment.id)
                    comment_insert_list.append(post.id)
                    comment_insert_list.append(str(comment.owner))
                    comment_insert_list.append(comment.text.replace("'","").replace('"', ''))
                    try:
                        client.execute(f'''
                            INSERT INTO comments VALUES {tuple(comment_insert_list)}
                        ''')
                    except Exception as E:
                        print('comments:')
                        print(E)
                        print(comment_insert_list)


Наконец, когда все посты и комментарии пройдены, можем занести информацию о пользователе.

Сбор информации о пользователе

user_insert_list = []
        user_insert_list.append(datetime.now().strftime('%Y-%m-%d %H:%M:%S'))
        user_insert_list.append(account.id)
        user_insert_list.append(account.username)
        user_insert_list.append(account.full_name)
        user_insert_list.append(account.base_url)
        user_insert_list.append(account.biography)
        user_insert_list.append(account.followers_count)
        user_insert_list.append(account.follows_count)
        user_insert_list.append(account.media_count)
        user_insert_list.append(account_total_comments)
        user_insert_list.append(account_total_likes)
        user_insert_list.append(int(account.is_verified))
        user_insert_list.append(int(account.country_block))
        user_insert_list.append(account.profile_pic_url)
        user_insert_list.append(account.profile_pic_url_hd)
        if account.fb_page is not None:
            user_insert_list.append(account.fb_page)
        else:
            user_insert_list.append('')
        try:
            client.execute(f'''
                INSERT INTO users VALUES {tuple(user_insert_list)}
            ''')
        except Exception as E:
            print('users:')
            print(E)
            print(user_insert_list)

Результаты
Таким методом нам удалось собрать 500 пользователей, 20 тысяч постов и 40 тысяч комментариев. Теперь можем написать простой запрос к базе и получить топ-10 Instagram-аккаунтов по теме аналитики и машинного обучения за последнее время:

SELECT *
FROM users
ORDER BY followers_count DESC
LIMIT 10

А вот и приятный бонус, для тех, кто искал на какие аккаунты в Instagram подписаться по релевантной тематике:

  1. @ai_machine_learning
  2. @neuralnine
  3. @datascienceinfo
  4. @compscistuff
  5. @computersciencelife
  6. @welcome.ai
  7. @papa_programmer
  8. @data_science_learn
  9. @neuralnet.ai
  10. @techno_thinkers

Полный код проекта доступен на GitHub

Обзор библиотеки pandas-profiling на примере датасета Superstore Sales

Время чтения текста – 10 минут

Перед тем как работать с данными, необходимо составить представление, с чем мы имеем дело. В материале будем рассматривать датасет SuperStore Sales, а именно его лист Orders. В нём собраны данные о покупках клиентов канадского интернет-супермаркета: идентификаторы заказа, товаров, клиента, тип доставки, цены, категории и названия продуктов и прочее. Подробнее с датасетом можно ознакомиться на GitHub. Например, если мы создадим из датасета DataFrame, можем воспользоваться стандартным методом describe() библиотеки pandas для описания данных:

import pandas as pd

df = pd.read_csv('superstore_sales_orders.csv', decimal=',')
df.describe(include='all')

И во многих случаях получим такую кашу:

Код библиотеки доступен на GitHub

Если постараться и потратить время, можно извлечь полезную информацию. Например, можем узнать, что люди чаще выбирают «Regular air» в качестве доставки или что большинство заказов поступило из провинции Онтарио. Тем не менее, есть и другое решение, которое подробнее и качественнее описывает датасет — библиотека pandas-profiling. Вы отдаёте ей DataFrame, а она генерирует html-страницу с подробным описанием сета данных:

import pandas_profiling
profile = pandas_profiling.ProfileReport(df)
profile.to_file("output.html")

Всего Pandas Profiling возвращает 6 разделов: обзор датасета, переменные, отношения и корреляцию между ними, количество пропущенных значений и примеры из датасета.

Web-версия отчёта доступна по ссылке

Обзор данных

Рассмотрим первый подраздел — «Overview». Библиотека собрала следующую статистику: количество переменных, наблюдений, пропущенных ячеек, дубликатов и общий вес файла. В колонке Variable types описаны типы переменных: здесь 12 качественных и 9 числовых.

В подразделе «Reproduction» собрана техническая информация библиотеки: сколько времени занял анализ сета данных, версия библиотеки и прочее.

А подраздел «Warnings» сообщает о возможных проблемах в структуре датасета: сейчас он, например, предупреждает, что у поля «Order Date» — слишком большое количество уникальных значений.

Переменные

Двигаемся ниже. В этом разделе содержится подробное описание каждой переменной: сколько возможных уникальных значений она принимает, сколько значений пропущено, сколько памяти занимает поле. Справа от статистики присутствует гистограмма с распределением значений поля.

При нажатии на Toggle details откроется расширенная информация: квартили, медиана и прочая полезная описательная статистика. В остальных вкладках находятся гистограмма из основного экрана, топ-10 значений по частоте и экстремальные значения.

Отношения переменных

В этом разделе визуализированы отношения переменных при помощи hexbin plot: выглядит это не очень очевидно и понятно. Особенно усугубляет положение отсутствие легенды к графику.

Корреляция переменных

В этом разделе представлена по-разному посчитананя корреляция переменных: например, первым указано r-value Пирсона. Заметно, что переменная Profit положительно коррелирует с переменной Sales. При нажатии на Toggle correlation descriptions открывается подробное пояснение к каждому коэффициенту.

Пропущенные значения

Тут всё просто — bar chart, матрица и дендрограмма с количеством заполненных полей в каждой переменной. Заметно, что в колонке Product Base Margin отсутствуют три значения.

Примеры

И, наконец, последний раздел представляет первые и последние 10 значений в качестве примера кусков сета данных — аналог метода head() из pandas.

Что в итоге?

Библиотека уделяет больше внимания статистике, чем pandas: можно получить подробную описательную статистику по каждой переменной, посмотреть, как коррелируют между собой столбцы датасета. В совокупности с генерацией простого и удобного интерфейса библиотека строит полноценный отчёт по датасету, уже на основании которого можно делать выводы и сформировать представление о данных.
И всё же, у библиотеки есть и минусы. На генерацию отчётов к громадным датасетам может уйти много времени вплоть до нескольких часов. Это безусловно хороший инструмент для автоматического проектирования, но он не может сделать полноценный анализ за вас и добавить больше деталей в графики. Кроме того, если вы только начали практиковаться с анализом данных лучше будет начать с pandas — это закрепит ваши навыки и придаст уверенности при работе с данными.

Пишем клиент для нового API nalog.ru

Время чтения текста – 6 минут

Ранее в блоге мы рассказывали, как благодаря открытому API можно собирать данные от ФНС по нашим чекам из магазинов, обращаясь к приложению налоговой. С прошлой недели способ стал нерабочим: ФНС обновили методы приложения. Сегодня напишем свой клиент для nalog.ru, который проходит авторизацию и отправляет чеки на проверку.

Авторизация

Прежде чем начать пользоваться приложением, наш профиль необходимо авторизовать. В отличии от предыдущей версии, текущая требует прохождение капчи для авторизации по мобильному телефону — такой способ нам не подходит. Проще всего будет входить в профиль по ИНН и паролю от личного кабинета налогоплательщика. Для хранения этих данных создадим файл credentials.env. Переменную CLIENT_SECRET зададим согласно коду: она отвечает за авторизацию приложения. А ИНН и пароль подставляем свои.

INN = 
PASSWORD = 
CLIENT_SECRET=IyvrAbKt9h/8p6a7QPh8gpkXYQ4=

Теперь создадим файл nalog_python.py, в котором будет описан клиент. Библиотека dotenv используется для загрузки нашего логина и пароля из .env файла.

import os
import json
import requests
from dotenv import load_dotenv

Опишем класс NalogRuPython, и начнём с глобальных переменных класса. Здесь перечисляем headers, необходимые для отправки запроса.

class NalogRuPython:
    HOST = 'irkkt-mobile.nalog.ru:8888'
    DEVICE_OS = 'iOS'
    CLIENT_VERSION = '2.9.0'
    DEVICE_ID = '7C82010F-16CC-446B-8F66-FC4080C66521'
    ACCEPT = '*/*'
    USER_AGENT = 'billchecker/2.9.0 (iPhone; iOS 13.6; Scale/2.00)'
    ACCEPT_LANGUAGE = 'ru-RU;q=1, en-US;q=0.9'

В конструкторе класса прочитаем данные из нашего окружения методом load_dotenv и вызовем метод set_session_id для получения __session_id, который сейчас опишем. Идентификатор сессии необходим для отправки прочих запросов к серверу налоговой, поэтому его получаем первым делом.

def __init__(self):
        load_dotenv()
        self.__session_id = None
        self.set_session_id()

Метод set_session_id проводит авторизацию пользователя по ИНН и паролю от личного кабинета налогоплательщика и ничего не возвращает, только задаёт значение переменной __session_id. Отправляем по указанному в глобальных переменных HOST запрос с нашими данными от аккаунта и получаем идентификатор сессии в ответе.

def set_session_id(self) -> None:
        if os.getenv('CLIENT_SECRET') is None:
            raise ValueError('OS environments not content "CLIENT_SECRET"')
        if os.getenv('INN') is None:
            raise ValueError('OS environments not content "INN"')
        if os.getenv('PASSWORD') is None:
            raise ValueError('OS environments not content "PASSWORD"')

        url = f'https://{self.HOST}/v2/mobile/users/lkfl/auth'
        payload = {
            'inn': os.getenv('INN'),
            'client_secret': os.getenv('CLIENT_SECRET'),
            'password': os.getenv('PASSWORD')
        }
        headers = {
            'Host': self.HOST,
            'Accept': self.ACCEPT,
            'Device-OS': self.DEVICE_OS,
            'Device-Id': self.DEVICE_ID,
            'clientVersion': self.CLIENT_VERSION,
            'Accept-Language': self.ACCEPT_LANGUAGE,
            'User-Agent': self.USER_AGENT,
        }

        resp = requests.post(url, json=payload, headers=headers)
        self.__session_id = resp.json()['sessionId']

Получение идентификатора чека

Следующий шаг — получение ticket_id. Прежде чем отправить сам чек, необходимо получить его идентификатор для проверки. Опишем метод _get_ticket_id, который принимает строку с расшифрованным QR-кодом чека, отправляет соответствующий запрос на сервер и возвращает идентификатор для этой строки. В headers помимо указания глобальных переменных появился также __session_id, который требует метод /v2/ticket.

def _get_ticket_id(self, qr: str) -> str:
        url = f'https://{self.HOST}/v2/ticket'
        payload = {'qr': qr}
        headers = {
            'Host': self.HOST,
            'Accept': self.ACCEPT,
            'Device-OS': self.DEVICE_OS,
            'Device-Id': self.DEVICE_ID,
            'clientVersion': self.CLIENT_VERSION,
            'Accept-Language': self.ACCEPT_LANGUAGE,
            'sessionId': self.__session_id,
            'User-Agent': self.USER_AGENT,
        }
        resp = requests.post(url, json=payload, headers=headers)
        return resp.json()["id"]

Расшифровка чека

Последний шаг — проверка чека. Формируем по ticket_id запрос к серверу и получаем подробную расшифровку чека в ответе. На этом клиент полностью описан и готов к работе.

def get_ticket(self, qr: str) -> dict:
        ticket_id = self._get_ticket_id(qr)
        url = f'https://{self.HOST}/v2/tickets/{ticket_id}'
        headers = {
            'Host': self.HOST,
            'sessionId': self.__session_id,
            'Device-OS': self.DEVICE_OS,
            'clientVersion': self.CLIENT_VERSION,
            'Device-Id': self.DEVICE_ID,
            'Accept': self.ACCEPT,
            'User-Agent': self.USER_AGENT,
            'Accept-Language': self.ACCEPT_LANGUAGE,
        }
        resp = requests.get(url, headers=headers)
        return resp.json()

Наконец, для удобства опишем пример работы клиента. Создадим экземпляр класса NalogRuPython, зададим для примера строку QR-кода и получим расшифрованный ticket, который затем напечатаем на экране.

if __name__ == '__main__':
    client = NalogRuPython()
    qr_code = "t=20200727T1117&s=4850.00&fn=9287440300634471&i=13571&fp=3730902192&n=1"
    ticket = client.get_ticket(qr_code)
    print(json.dumps(ticket, indent=4))

Клиент можно использовать и в своих скриптах: для этого нужно импортировать класс, создать экземпляр и, как и в примере, вызвать метод get_ticket.

from nalog_python import NalogRuPython

client = NalogRuPython()
qr_code = "t=20200727T1117&s=4850.00&fn=9287440300634471&i=13571&fp=3730902192&n=1"
ticket = client.get_ticket(qr_code)

Полный код проекта на GitHub

 18 комментариев    1372   1 мес   Data Analytics   nalog.ru   python

Визуализация данных на российской карте библиотекой Plotly

Время чтения текста – 11 минут

Часто для визуализации данных подходит карта: например, когда нужно показать, как статистика ведёт себя в определённых городах, областях, регионах. В таких случаях каждый регион или другая административная единица кодируется: ее границы преобразуют в полигоны и мультиполигоны с координатами широты и долготы относительно карты мира. Для Америки и Европы не составит труда найти встроенное в библиотеку Plotly решение, но в случае с картой России такого реализованного решения сходу найти не удалось. Сегодня мы разметим готовый geojson файл с административными границами регионов России, напишем парсер последних данных по коронавирусу и визуализируем статистику на карте при помощи библиотеки Plotly.

from urllib.request import urlopen
import json
import requests
import pandas as pd
from selenium import webdriver
from bs4 import BeautifulSoup as bs
import plotly.graph_objects as go

Правим geojson

Скачаем открытый geojson с границами российских регионов, найденный по одной из первых ссылок в Google по запросу «russia geojson». В нём уже есть кое-какие данные: например, наименования регионов. Но этот geojson-файл пока ещё не подходит под требуемый формат Plotly: в нём не размечены идентификаторы регионов.

with urlopen('https://raw.githubusercontent.com/codeforamerica/click_that_hood/master/public/data/russia.geojson') as response:
    counties = json.load(response)

Кроме разметки идентификаторов есть различия в наименовании регионов. Например, на сайте стопкоронавирус.рф, откуда мы будем брать свежие данные о заболевших, республика Башкортостан занесена как «Республика Башкортостан», а в нашем geojson-файле — просто «Башкортостан». Все эти различия необходимо устранить во избежание конфликтов. Кроме того, все первые буквы в названиях регионов должны начинаться с верхнего регистра.

regions_republic_1 = ['Бурятия', 'Тыва', 'Адыгея', 'Татарстан', 'Марий Эл',
                      'Чувашия', 'Северная Осетия – Алания', 'Алтай',
                      'Дагестан', 'Ингушетия', 'Башкортостан']
regions_republic_2 = ['Удмуртская республика', 'Кабардино-Балкарская республика',
                      'Карачаево-Черкесская республика', 'Чеченская республика']
for k in range(len(counties['features'])):
    counties['features'][k]['id'] = k
    if counties['features'][k]['properties']['name'] in regions_republic_1:
        counties['features'][k]['properties']['name'] = 'Республика ' + counties['features'][k]['properties']['name']
    elif counties['features'][k]['properties']['name'] == 'Ханты-Мансийский автономный округ - Югра':
        counties['features'][k]['properties']['name'] = 'Ханты-Мансийский АО'
    elif counties['features'][k]['properties']['name'] in regions_republic_2:
        counties['features'][k]['properties']['name'] = counties['features'][k]['properties']['name'].title()

Из получившегося geojson-файла сформируем DataFrame с регионами России: возьмём идентификаторы и наименования.

region_id_list = []
regions_list = []
for k in range(len(counties['features'])):
    region_id_list.append(counties['features'][k]['id'])
    regions_list.append(counties['features'][k]['properties']['name'])
df_regions = pd.DataFrame()
df_regions['region_id'] = region_id_list
df_regions['region_name'] = regions_list

Если сделаем всё правильно, получим такой DataFrame:

Собираем данные

Будем парсить эту таблицу:

Воспользуемся библиотекой Selenium. Перейдём на сайт и получим всю страницу, а затем преобразуем её в Soup для парсинга.

driver = webdriver.Chrome()
driver.get('https://стопкоронавирус.рф/information/')
source_data = driver.page_source
soup = bs(source_data, 'lxml')

На сайте наименования регионов находятся под тегом <th>, а свежие данные по регионам под тегом <td>. Для начала получим данные.

divs_data = soup.find_all('td')

Данные в divs_data выглядят следующим образом:

Вся информация идёт в одну строчку: и новые случаи, и активные, и все прочие. Тем не менее, заметно, что каждому региону соответствует пять значений: для Москвы это первые пять, для Московской области — вторые пять и так далее. Воспользуемся этим: в каждый из пяти списков будем класть значения согласно индексу. Если это первое значение, то оно войдёт в список выявленных случаев, если второе — в список новых случаев и так далее. После пяти индекс будет обнуляться.

count = 1
for td in divs_data:
    if count == 1:
        sick_list.append(int(td.text))
    elif count == 2:
        new_list.append(int(td.text))
    elif count == 3:
        cases_list.append(int(td.text))
    elif count == 4:
        healed_list.append(int(td.text))
    elif count == 5:
        died_list.append(int(td.text))
        count = 0
    count += 1

Следующим шагом соберём названия регионов из таблицы — они лежат под классом col-region. Из названий нужно убрать лишние двойные пробелы и символы переноса строки.

divs_region_names = soup.find_all('th', {'class':'col-region'})
region_names_list = []
for i in range(1, len(divs_region_names)):
    region_name = divs_region_names[i].text
    region_name = region_name.replace('\n', '').replace('  ', '')
    region_names_list.append(region_name)

Соберём DataFrame:

df = pd.DataFrame()
df['region_name'] = region_names_list
df['sick'] = sick_list
df['new'] = new_list
df['cases'] = cases_list
df['healed'] = healed_list
df['died'] = died_list

И посмотрим на Челябинскую область под десятым индексом — в конце наименования остался пробел! Этот пробел в конце строки может причинить много бед, ведь тогда название не будет соответствовать названию региона в geojson-файле. Уберём его — благо, все остальные наименования на сайте в порядке.

df.loc[10, 'region_name'] = df[df.region_name == 'Челябинская область '].region_name.item().strip(' ')

Наконец, сделаем merge двух DataFrame по колонке названия региона, чтобы в получившейся таблице с данными по коронавирусу появилась колонка с идентификатором региона, необходимая для генерации карты.

df = df.merge(df_regions, on='region_name')

Визуализация данных на карте Plotly

Создадим новую фигуру — она будет являться объектом Choroplethmapbox. В параметр geojson передаём переменную counties с geojson-файлом, в параметр locations вставляем идентификаторы регионов. Параметр z — значения, которые мы хотим визуализировать. Для примера возьмём количество новых случаев в каждом регионе — они лежат в колонке new таблицы. В text передаём названия регионов. Другой параметр — colorscale — нужен для цветового сопровождения данных. Он принимает списки со значениями от 0 до 1, которые являются позициями цветов в градиенте. Чем меньше заболевших, тем зеленее будет регион. С увеличением числа заболевших цвет переходит от желтого к красному. Параметр hovertemplate — шаблон панели, появляющейся при наведении на регион. С тултипом связан ещё один аргумент — customdata. Он принимает объединенные вдоль оси объекты, которые затем можно использовать в hovertemplate для отображения новых данных.

fig = go.Figure(go.Choroplethmapbox(geojson=counties,
                           locations=df['region_id'],
                           z=df['new'],
                           text=df['region_name'],
                           colorscale=[[0, 'rgb(34, 150, 79)'],
                                       [0.2, 'rgb(249, 247, 174)'],
                                       [0.8, 'rgb(253, 172, 99)'],
                                       [1, 'rgb(212, 50, 44)']],
                           colorbar_thickness=20,
                           customdata=np.stack([df['cases'], df['died'], df['sick'], df['healed']], axis=-1),
                           hovertemplate='<b>%{text}</b>'+ '<br>' +
                                         'Новых случаев: %{z}' + '<br>' +
                                         'Активных: %{customdata[0]}' + '<br>' +
                                         'Умерло: %{customdata[1]}' + '<br>' +
                                         'Всего случаев: %{customdata[2]}' + '<br>' +
                                         'Выздоровело: %{customdata[3]}' +
                                         '<extra></extra>',
                           hoverinfo='text, z'))

Теперь зададим стиль карты — возьмём готовую carto-positron, нейтральный и минималистичный шаблон, который не отвлекает от основных данных. Аргумент mapbox_zoom отвечает за приближение карты, а mapbox_center принимает координаты начального центра карты. Зададим marker_line_width равный нулю, чтобы убрать границы между регионами. После зададим всем отступам в margin значение 0, чтобы карта была визуально шире. Сразу после выведем фигуру методом show().

fig.update_layout(mapbox_style="carto-positron",
                  mapbox_zoom=1, mapbox_center = {"lat": 66, "lon": 94})
fig.update_traces(marker_line_width=0)
fig.update_layout(margin={"r":0,"t":0,"l":0,"b":0})
fig.show()

Получилась такая карта. Из диаграммы следует, что больше всего заболевших за прошедшие сутки появилось в Москве — 608 случаев, что существенно относительно остальных регионов. Особенно в сравнении с Ненецким автономным округом, где число случаев новых заражений, на удивление, равняется нулю.

Полный код проекта на GitHub

 Нет комментариев    281   1 мес   dash   Data Analytics   plotly   python

Деплой дашборда на AWS Elastic Beanstalk

Время чтения текста – 7 минут

Если под рукой имеется машина на Amazon Web Services и стоит задача развернуть веб-приложение, можно воспользоваться сервисом Elastic Beanstalk от AWS: он позволяет развертывать приложения под другими сервисами от Amazon, включая EC2.

Готовим приложение

В материале «Делаем дашборд с параметром на Python» мы создали проект с двумя файлами: application.py — скрипт с генерацией локального дашборда и get_plots.py — скрипт, возвращающий scatter plot с пивоварнями Untappd из материала «Строим scatter plot по пивоварням Untappd». Немного подкорректируем файл application.py: чтобы приложение запускалось на Elastic Beanstalk, app.server в конце файла присвоим переменной application. Должно получиться вот так:

application = app.server

if __name__ == '__main__':
   application.run(debug=True, port=8080)

Перед тем, как развернуть приложение, нужно собрать его в архив. В архиве должны присутствовать все необходимые файлы, включая requirements.txt — перечень зависимостей приложения. В нём перечислены пакеты и версии, необходимые для запуска приложения. Чтобы его создать, достаточно в директории с проектом и окружением ввести команду pip freeze и отправить вывод в файл:

pip freeze > requirements.txt

Теперь соберём архив. В unix для архивации и сжатия предусмотрена встроенная утилита zip.

zip deploy_v0 application.py get_plots.py requirements.txt

Создаём приложение и окружение

Переходим на Elastic Beanstalk в раздел «Applications». Жмём на «Create a new application».

В открывшейся странице заполняем наименование приложения и описание. Ниже предлагается присвоить приложению теги для упрощенной категоризации ресурсов. Формат вводимого тега похож на словарь Python: это пара ключ — значение, ключ должен быть уникален. После заполнения данных жмём на оранжевую кнопку «Create».

Сразу после нам покажут список окружений для приложения: изначально он пустой, поэтому нажимаем на «Create a new environment».

Так как мы работаем с веб-приложением, выбираем окружение веб-сервера:

После предлагают ввести информацию о приложении, включая домен. Можно ввести свой домен, если таковой будет свободен:

Следом выбираем платформу веб-приложения. Наше написано на Python.

Теперь загружаем само приложение: так как код мы уже написали, выбираем «Upload your code» и прикрепляем файл с архивом. После жмём «Create environment».

Следом откроется окно с логами создания окружения. Пару минут придётся подождать.

Если все сделали правильно, увидим экран с галочкой и подписью «OK»: это означает, что наше приложение успешно загружено и доступно. Если захотим загрузить новую версию, достаточно пересобрать архив с файлами и загрузить его по кнопке «Upload and deploy».

По ссылке, представленной выше можем пройти на сайт, где лежит дашборд. При помощи тега <iframe> этот дашборд можно также встроить на другой сайт:

<iframe id="igraph" scrolling="no" style="border:none;"seamless="seamless" src="http://dashboardleftjoin-env.eba-qxzgfj64.us-east-2.elasticbeanstalk.com" height="1100" width="800"></iframe>

В итоге получим такой дашборд на сайте:

Полный код проекта на GitHub

Ранее Ctrl + ↓