2 заметки с тегом

proxy

Парсим вакансии для аналитиков из Indeed

Время чтения текста – 8 минут

В этом материале мы расскажем, как парсить вакансии с сайта Indeed. Indeed — это крупнейший в мире поисковик вакансий. Этим текстом мы начинаем большой проект по анализу и визуализации показателей оплаты труда в области Data Science в разных странах.
Подобный анализ рынка вакансий, но только в России, мы проводили в материале Анализ рынка вакансий аналитики и BI: дашборд в Tableau, когда парсили данные с сайта HeadHunter.

А еще у нас можно почитать материал Парсим данные каталога сайта, используя Beautiful Soup и Selenium

Импорт библиотек
Библиотека fake_useragent имитирует реальный User-Agent, чтобы преодолеть защиту сайта от парсинга. Таким образом мы сможем пройти проверку HTTP заголовка User-Agent.
Модуль urllib.parse разбирает URL-адрес на компоненты и записывает его как кортеж. Он пригодится для перехода на карточки вакансий. BeautifulSoup поможет разобраться в структуре html-страницы и добыть нужную нам информацию.

import requests
from datetime import timedelta, datetime
import urllib.parse
from fake_useragent import UserAgent
from bs4 import BeautifulSoup
import pandas as pd
import time
from lxml.html import fromstring
from clickhouse_driver import Client
from clickhouse_driver import errors
import numpy as np
from funcs import check_title, get_skills_row, parse_salary, get_sheetname, create_table

Создадим таблицу в Clickhouse
Данные, которые мы собираемся собрать, будем хранить в базе Clickhouse.

create_table = '''CREATE TABLE if not exists indeed.vacancies (
    row_idx UInt16,
    query_string String,
    country String,
    title String,
    company String,
    city String,
    job_added Date,
    easy_apply UInt8,
    company_rating Nullable(Float32),
    remote UInt8,
    job_id String,
    job_link String,
    sheet String,
    skills String,
    added_date Date,
    month_salary_from_USD Float64,
    month_salary_to_USD Float64,
    year_salary_from_USD Float64,
    year_salary_to_USD Float64,
)
ENGINE = ReplacingMergeTree
SETTINGS index_granularity = 8192'''

Обход блокировок
Нам нужно обойти защиту Indeed и избежать блокировки по IP. Для этого используем анонимные прокси адреса на сайте free-proxy-list.net. Как собрать свежие прокси, мы писали в нашем предыдущем тексте «Пишем парсер свежих прокси на Python для Selenium». Прокси адреса мы запишем в массив, который понадобится в момент обращения к Indeed, когда запрос будет проверять User-Agent.

Данный метод удаляет IP из списка с прокси в том случае, если ответ от Indeed через него так и не пришел.

def remove_proxy_from_list_and_update_if_required(proxy):
    global _proxies
    _proxies.remove(proxy)
    if len(_proxies) == 0:
        update_proxy_list()

Функция, используя прокси, возвращает нам страницу Indeed, из которой мы впоследствии спарсим данные.

def get_page(updated_url, session):
    proxy = get_proxy()
    proxy_dict = {"http": proxy, "https": proxy}
    logger.info(f'try with proxy: {proxy}')
    try:
        session.proxies = proxy_dict
        return session.get(updated_url, timeout=15)
    except (requests.exceptions.RequestException, requests.exceptions.ProxyError, requests.exceptions.ConnectTimeout,
            requests.exceptions.ReadTimeout, requests.exceptions.SSLError,
            requests.exceptions.ConnectionError, url_ex.MaxRetryError, ConnectionResetError,
            socket.timeout, url_ex.ReadTimeoutError):
        remove_proxy_from_list_and_update_if_required(proxy)
        logger.info(f'try with proxy {proxy}')
        return get_page(updated_url, session)

Методы для парсера
Искомые данные нужно будет искать по тегам и атрибутам верстки с помощью BeautifulSoup. Мы заранее собрали ключевые слова, которые нас будут интересовать в вакансиях, и подготовили с ними отдельный датасет.

В карточках вакансий нет точной даты публикации, указано лишь сколько дней назад она была опубликована. Сохраним точную дату публикации в традиционном формате с помощью timedelta.

def raw_date_to_str(raw_date):
    raw_date = raw_date.lower()
    if '+' in raw_date or "более" in raw_date:
        delta = timedelta(days=32)
        return (datetime.now() - delta).strftime("%Y-%m-%d")
    else:
        parts = raw_date.split()
        for part in parts:
            if part.isdigit():
                delta = timedelta(days=part.isdigit())
                return (datetime.now() - delta).strftime("%Y-%m-%d")
    return ""

Сохраним id вакансии в системе Indeed. Подставляя id в URL страницы, мы сможем получить доступ к полному описанию вакансий.

def get_job_id_from_card(card):
    try:
        return card['id'].split('_')[1]
    except:
        return ""

Данный метод соберет названия вакансий.

def get_title_from_card(card):
    try:
        job_title = card.find('a', {'class': 'jobtitle'}).text
        return job_title.replace('\n', '')
    except:
        return ''

Аналогичным образом напишем методы, которые будут собирать данные о названии компании, времени публикации объявления, местоположении работодателя и рейтинге работодателя на портале.

URL сайта Indeed пишется для разных стран по-разному. Для США это будет просто indeed.com, а локализации для других стран получают префиксом xx.indeed.com. Список с префиксами мы собрали в массив заранее из https://opensource.indeedeng.io/api-documentation/docs/supported-countries/ списка Indeed.

def get_link_from_card(card, card_country):
    try:
        if card_country == 'us':
            return f"https://indeed.com{card.find('a', {'class': 'jobtitle'})['href']}"
        else:
            return f"https://{card_country}.indeed.com{card.find('a', {'class': 'jobtitle'})['href']}"
    except:
        return ""

Спарсим описание вакансии, которое можно найти по тегу ’summary’. Именно там содержатся требования, которые предъявляют к кандидату.

def get_summary_from_card_and_transform_to_skills(card):
    try:
        smr = card.find('div', {'class': 'summary'}).text
        return get_skills_row(smr)
    except:
        return ""
Необходимые hard-skills из описания вакансий будем сверять со списком 'skills'. 
skills = ["python", "tableau", "etl", "power bi", "d3.js", "qlik", "qlikview", "qliksense",
          "redash", "metabase", "numpy", "pandas", "congos", "superset", "matplotlib", "plotly",
          "airflow", "spark", "luigi", "machine learning", "amplitude", "sql", "nosql", "clickhouse",
          'sas', "hadoop", "pytorch", "tensorflow", "bash", "scala", "git", "aws", "docker",
          "linux", "kafka", "nifi", "ozzie", "ssas", "ssis", "redis", 'olap', ' r ', 'bigquery', 'api', 'excel']

Эта функция разобьет ’summary’ на слова пробелом и проверит их на соответствие нашему списку. В датасет будут возвращаться совпадения с нашим списком hard-skills.

def get_skills_row(summary):
    summary = summary.lower()
    row = []
    for sk in skills:
        if sk in summary:
            row.append(sk)
    return ','.join(row)

На выходе мы получим таблицу с примерно 30 тысячами строк.

Полный код проекта можно посмотреть в нашем репозитории на GitHub.

Пишем парсер свежих прокси на Python для Selenium

Время чтения текста – 6 минут

Случается такое, что во время парсинга страниц через Selenium можно словить бан по IP-адресу. Чтобы этого избежать, лучше использовать прокси. Сегодня напишем скрипт, который сам спарсит новые прокси, проверит их и в случае успеха передаст в Selenium.

Парсинг новых прокси

Начнём с импортирования библиотек — нам понадобятся модули для отправления запросов, для парсинга и хранения данных.

import requests_html
from bs4 import BeautifulSoup
import pickle
import requests

Все прокси будем хранить в множестве px_list, а также отправлять в pickle-файл proxis.pickle. В случае, если он не будет пустым, попробуем взять из него данные.

px_list = set()
try:
    with open('proxis.pickle', 'rb') as f:
            px_list = pickle.load(f)
except:
    pass

Функция scrap_proxy() будет заходить на сайт free-proxy-list.net и собирать оттуда 20 последних прокси. На сайте новые адреса появляются ежеминутно. Вот, как выглядит интересующая нас область сайта:

Из всего этого будем собирать ID Address и Port. Посмотрим, как элементы расположены в коде страницы:

Все нужные данные являются ячейками таблицы. В цикле будем брать первые 20 строк, обращаясь к IP-адресу и порту по xpath. В конце функция будет отправлять свежие прокси в pickle-файл и возвращать список прокси.

def scrap_proxy():  
    global px_list
    px_list = set()

    session = requests_html.HTMLSession()
    r = session.get('https://free-proxy-list.net/')
    r.html.render()
    for i in range(1, 21):
        add=r.html.xpath('/html/body/section[1]/div/div[2]/div/div[2]/div/table/tbody/tr[{}]/td[1]/text()'.format(i))[0]
        port=r.html.xpath('/html/body/section[1]/div/div[2]/div/div[2]/div/table/tbody/tr[{}]/td[2]/text()'.format(i))[0]
        px_list.add(':'.join([add, port]))

    print("---New proxy scraped, left: " + str(len(px_list)))
    with open('proxis.pickle', 'wb') as f:
        pickle.dump(px_list, f)
    return px_list

Проверка полученных прокси

Не всегда свежие прокси оказываются рабочими: мы напишем функцию, которая сама отправит get-запрос к сайту Google с прокси и в случае появления любой ошибки будет возвращать False. В случае, если прокси оказался рабочим, функция вернёт True.

def check_proxy(px):
    try:
        requests.get("https://www.google.com/", proxies = {"https": "https://" + px}, timeout = 3)
    except Exception as x:
        print('--'+px + ' is dead: '+ x.__class__.__name__)
        return False
    return True

Основная функция

Главная функция скрипта будет принимать в аргумент переменную scrap, по умолчанию принимающую False. Мы будем собирать новые прокси только в том случае, если scrap == True или длина списка прокси менее 6. Затем в цикле while True собираем новые прокси, берём последний, проверяем его и в случае, если check_proxy вернёт True, отправляем прочие прокси в pickle-файл и возвращаем рабочий адрес и порт.

def get_proxy(scrap = False):
    global px_list
    if scrap or len(px_list) < 6:
            px_list = scrap_proxy()
    while True:
        if len(px_list) < 6:
            px_list = scrap_proxy()
        px = px_list.pop()
        if check_proxy(px):
            break
    print('-'+px+' is alive. ({} left)'.format(str(len(px_list))))
    with open('proxis.pickle', 'wb') as f:
            pickle.dump(px_list, f)
    return px

Используем скрипт с Selenium

А ещё мы писали, как через Selenium имитировать нажатие кнопки и скроллинг каталога интернет-магазина

Чтобы к скрипту Selenium подключить прокси, импортируем функцию get_proxy. Заходим в бесконечный цикл, в переменную PROXY запишем свежие полученные прокси и, используя опции браузера, добавим наши прокси и инициируем новый webdriver с обновленными опциями. Затем пробуем зайти на сайт, добавить свои cookie и в случае успеха выходим из цикла оператором break. Если новый прокси всё равно оказался нерабочим или вылезла капча, в цикле получим новые прокси и повторим, пока не получится.

from px_scrap import get_proxy

while True:
    PROXY = get_proxy(scrap=True)
    options.add_argument('--proxy-server=%s' % PROXY)
    driver = webdriver.Chrome(chrome_options=options, executable_path=os.path.abspath("chromedriver"))
    try:
        driver.get('https://google.com')
        driver.add_cookie(cookies)
    except:
        print('Captcha!')
 Нет комментариев    635   2020   proxy   python   selenium