10 заметок с тегом

plotly

Обзор дашборда в Dash

Время чтения текста – 2 минуты

Посмотрите и другие наши материалы про plotly

Сегодня публикуем не совсем классический выпуск обзора BI-инструментов — потому что речь пойдёт о Dash, фреймворке для Python от plotly. Dash — гибкий инструмент, который предоставляет набор компонентов для работы с HTML и Bootstrap для создания дашбордов с графиками plotly. Дашборд, созданный при помощи Dash — это веб-страница, написанная на Python. Любую диаграмму можно настроить, изменив передаваемые параметры прямо в коде. А работать с самими данными можно любым удобным в Python способом — например, при помощи датафреймов pandas.

В новом обзоре посмотрим на работу коллбэков и фильтров в Dash, а также на реализацию таблиц и диаграмм дашборда Superstore в plotly и Dash.

Внутри команды мы оценили дашборд и получили следующие средние оценки (1 — худшая оценка, 10 — лучшая):
Отвечает ли заданным вопросам — 8,83
Порог входа в инструмент — 4,83
Функциональность инструмента — 8,66
Удобство пользования — 7,83
Соответствие результата макету — 9,00
Визуальная составляющая — 8,16

Итог: дашборд получает 8,05 баллов из 10. Посмотрите на полученный результат.

Автор дашборда, член команды Valiotti Analytics — Елизавета Мазурова

Деплой дашборда на виртуальной машине Amazon EC2

Время чтения текста – 4 минуты

Мы уже рассказывали о том, как развернуть дашборд с помощью сервиса Elastic Beanstalk от Amazon Web Services. В этом материале расскажем как развертывать дашборды на виртуальной машине Amazon EC2.

Подготовка

Начало работы с платформой AWS и создание сервера мы описали в материале Устанавливаем Clickhouse на AWS. Проект дашборда был подготовлен в предыдущей заметке Деплой дашборда на AWS Elastic Beanstalk. Все файлы можно скачать из нашего репозитория на GitHub.

Работа с терминалом

Подключитесь к вашему серверу на EC2 через терминал, используя SSH-ключ.
Из домашней директории копируем архив с необходимыми файлами на сервер командой scp:

scp -i /home/user/.ssh/ssh_key.pem /home/user/brewery_dashboard.zip ubuntu@api.sample.ru:/home/ubuntu/

Распаковываем архив с помощью команды unzip, указав директорию:

unzip -d /home/ubuntu/brewery_dashboard brewery_dashboard.zip

После этого в каталоге появится папка /brewery_dashboard/, в которой среди прочих будет текстовый файл requirements.txt. В нем находятся все библиотеки Python, которые нужны для корректной работы дашборда. Устанавливаем их следующей командой:

pip install -r requirements.txt

Запускаем дашборд

Создаем сервисный файл brewery.service в системной папке /etc/systemd/system:

sudo touch brewery.service

В нем прописываем всю необходимую информацию для деплоя нашего дашборда. Текстовый редактор вызывается следующей командой:

sudo nano brewery.service

В WorkingDirectory указываем папку, в которой находятся файлы проекта, а в ExecStart команду для запуска:

[Unit]
Description=Brewery Dashboard
After=network.target

[Service]
User=ubuntu
Group=www-data
WorkingDirectory=/home/ubuntu/brewery_dashboard/
ExecStart=/usr/bin/gunicorn3 --workers 3 --bind 0.0.0.0:8083 application:application

Запускаем brewery.service следующей командой:

sudo systemctl start brewery.service

И проверяем успешность запуска:

sudo systemctl status brewery.service

Система должна ответить, что все хорошо:

Теперь дашборд доступен по публичному адресу сервера с указанием порта . Можно открыть его в браузере или вставить на любой сайт с помощью тега <iframe>:

<ifrаme id='igraph' scrolling='no' style='border:none;'seamless='seamless' src='http://54.227.137.142:8083/' height='1100' width='800'></ifrаme>

Python и тексты нового альбома Земфиры: анализируем суть песен

Время чтения текста – 18 минут

Неделю назад вышёл первый за 8 лет студийный альбом Земфиры «Бордерлайн». К работе помимо рок-певицы приложили руку разные люди, в том числе и её родственники — рифф для песни «таблетки» написал её племянник из Лондона. Альбом получился разнообразным: например, песня «остин» посвящена главному персонажу игры Homescapes российской студии Playrix (кстати, посмотрите свежие Бизнес-секреты с братьями Бухманами, там они тоже про это рассказывают) — Земфире нравится игра, и для трека она связалась со студией. А сингл «крым» был написан в качестве саундтрека к новой картине соратницы Земфиры — Ренаты Литвиновой.

Послушать альбом в Apple Music / Яндекс.Музыке / Spotify

Тем не менее, дух всего альбома довольно мрачен — в песнях часто повторяются слова «боль», «ад», «бесишь» и прочие по смыслу. Мы решили провести разведочный анализ нового альбома, а затем при помощи модели Word2Vec и косинусной меры посмотреть на семантическую близость песен между собой и вычислить общее настроение альбома.

Для тех, кому скучно читать про подготовку данных и шаги анализа можно перейти сразу к результатам.

Подготовка данных

Для начала работы напишем скрипт обработки данных. Цель скрипта — из множества текстовых файлов, в каждом из которых лежит по песне, собрать единую csv-таблицу. При этом текст треков очищаем от знаков пунктуации и ненужных слов.

import pandas as pd
import re
import string
import pymorphy2
from nltk.corpus import stopwords

Создаём морфологический анализатор и расширяем список всего, что нужно отбросить:

morph = pymorphy2.MorphAnalyzer()
stopwords_list = stopwords.words('russian')
stopwords_list.extend(['куплет', 'это', 'я', 'мы', 'ты', 'припев', 'аутро', 'предприпев', 'lyrics', '1', '2', '3', 'то'])
string.punctuation += '—'

Названия песен приведены на английском — создадим словарь для перевода на русский и словарь, из которого позднее сделаем таблицу:

result_dict = dict()

songs_dict = {
    'snow':'снег идёт',
    'crimea':'крым',
    'mother':'мама',
    'ostin':'остин',
    'abuse':'абьюз',
    'wait_for_me':'жди меня',
    'tom':'том',
    'come_on':'камон',
    'coat':'пальто',
    'this_summer':'этим летом',
    'ok':'ок',
    'pills':'таблетки'
}

Опишем несколько функций. Первая читает целиком песню из файла и удаляет переносы строки, вторая очищает текст от ненужных символов и слов, а третья при помощи морфологического анализатора pymorphy2 приводит слова к нормальной форме. Модуль pymorphy2 не всегда хорошо справляется с неоднозначностью — для слов «ад» и «рай» потребуется дополнительная обработка.

def read_song(filename):
    f = open(f'{filename}.txt', 'r').read()
    f = f.replace('\n', ' ')
    return f

def clean_string(text):
    text = re.split(' |:|\.|\(|\)|,|"|;|/|\n|\t|-|\?|\[|\]|!', text)
    text = ' '.join([word for word in text if word not in string.punctuation])
    text = text.lower()
    text = ' '.join([word for word in text.split() if word not in stopwords_list])
    return text

def string_to_normal_form(string):
    string_lst = string.split()
    for i in range(len(string_lst)):
        string_lst[i] = morph.parse(string_lst[i])[0].normal_form
        if (string_lst[i] == 'аду'):
            string_lst[i] = 'ад'
        if (string_lst[i] == 'рая'):
            string_lst[i] = 'рай'
    string = ' '.join(string_lst)
    return string

Проходим по каждой песне и читаем файл с соответствующим названием:

name_list = []
text_list = []
for song, name in songs_dict.items():
    text = string_to_normal_form(clean_string(read_song(song)))
    name_list.append(name)
    text_list.append(text)

Затем объединяем всё в DataFrame и сохраняем в виде csv-файла.

df = pd.DataFrame()
df['name'] = name_list
df['text'] = text_list
df['time'] = [290, 220, 187, 270, 330, 196, 207, 188, 269, 189, 245, 244]
df.to_csv('borderline.csv', index=False)

Результат:

Облако слов по всему альбому

Начнём анализ с построения облака слов — оно отобразит, какие слова чаще всего встречаются в песнях. Импортируем нужные библиотеки, читаем csv-файл и устанавливаем конфигурации:

import nltk
from wordcloud import WordCloud
import pandas as pd
import matplotlib.pyplot as plt
from nltk import word_tokenize, ngrams

%matplotlib inline
nltk.download('punkt')
df = pd.read_csv('borderline.csv')

Теперь создаём новую фигуру, устанавливаем параметры оформления и при помощи библиотеки wordcloud отображаем слова с размером прямо пропорциональным частоте упоминания слова. Над каждым графиком дополнительно указываем название песни.

fig = plt.figure()
fig.patch.set_facecolor('white')
plt.subplots_adjust(wspace=0.3, hspace=0.2)
i = 1
for name, text in zip(df.name, df.text):
    tokens = word_tokenize(text)
    text_raw = " ".join(tokens)
    wordcloud = WordCloud(colormap='PuBu', background_color='white', contour_width=10).generate(text_raw)
    plt.subplot(4, 3, i, label=name,frame_on=True)
    plt.tick_params(labelsize=10)
    plt.imshow(wordcloud)
    plt.axis("off")
    plt.title(name,fontdict={'fontsize':7,'color':'grey'},y=0.93)
    plt.tick_params(labelsize=10)
    i += 1

EDA текстов альбома

Теперь проанализируем тексты песен — импортируем библиотеки для работы с данными и визуализации:

import plotly.graph_objects as go
import plotly.figure_factory as ff
from scipy import spatial
import collections
import pymorphy2
import gensim

morph = pymorphy2.MorphAnalyzer()

Сначала посчитаем число слов в каждой песне, число уникальных слов и процентное соотношение:

songs = []
total = []
uniq = []
percent = []

for song, text in zip(df.name, df.text):
    songs.append(song)
    total.append(len(text.split()))
    uniq.append(len(set(text.split())))
    percent.append(round(len(set(text.split())) / len(text.split()), 2) * 100)

А теперь составим из этого DataFrame и дополнительно посчитаем число слов в минуту для каждой песни:

df_words = pd.DataFrame()
df_words['song'] = songs
df_words['total words'] = total
df_words['uniq words'] = uniq
df_words['percent'] = percent
df_words['time'] = df['time']
df_words['words per minute'] = round(total / (df['time'] // 60))
df_words = df_words[::-1]

Данные хорошо бы визуализировать — построим две столбиковые диаграммы: одну для числа слов в песне, а другую для числа слов в минуту.

colors_1 = ['rgba(101,181,205,255)'] * 12
colors_2 = ['rgba(62,142,231,255)'] * 12

fig = go.Figure(data=[
    go.Bar(name='📝 Всего слов',
           text=df_words['total words'],
           textposition='auto',
           x=df_words.song,
           y=df_words['total words'],
           marker_color=colors_1,
           marker=dict(line=dict(width=0)),),
    go.Bar(name='🌀 Уникальных слов',
           text=df_words['uniq words'].astype(str) + '<br>'+ df_words.percent.astype(int).astype(str) + '%' ,
           textposition='inside',
           x=df_words.song,
           y=df_words['uniq words'],
           textfont_color='white',
           marker_color=colors_2,
           marker=dict(line=dict(width=0)),),
])

fig.update_layout(barmode='group')

fig.update_layout(
    title = 
        {'text':'<b>Соотношение числа уникальных слов к общему количеству</b><br><span style="color:#666666"></span>'},
    showlegend = True,
    height=650,
    font={
        'family':'Open Sans, light',
        'color':'black',
        'size':14
    },
    plot_bgcolor='rgba(0,0,0,0)',
)
fig.update_layout(legend=dict(
    yanchor="top",
    xanchor="right",
))

fig.show()
colors_1 = ['rgba(101,181,205,255)'] * 12
colors_2 = ['rgba(238,85,59,255)'] * 12

fig = go.Figure(data=[
    go.Bar(name='⏱️ Длина трека, мин.',
           text=round(df_words['time'] / 60, 1),
           textposition='auto',
           x=df_words.song,
           y=-df_words['time'] // 60,
           marker_color=colors_1,
           marker=dict(line=dict(width=0)),
          ),
    go.Bar(name='🔄 Слов в минуту',
           text=df_words['words per minute'],
           textposition='auto',
           x=df_words.song,
           y=df_words['words per minute'],
           marker_color=colors_2,
           textfont_color='white',
           marker=dict(line=dict(width=0)),
          ),
])

fig.update_layout(barmode='overlay')

fig.update_layout(
    title = 
        {'text':'<b>Длина трека и число слов в минуту</b><br><span style="color:#666666"></span>'},
    showlegend = True,
    height=650,
    font={
        'family':'Open Sans, light',
        'color':'black',
        'size':14
    },
    plot_bgcolor='rgba(0,0,0,0)'
)


fig.show()

Работа с Word2Vec моделью

При помощи модуля gensim загружаем модель, указывая на бинарный файл:

model = gensim.models.KeyedVectors.load_word2vec_format('model.bin', binary=True)

Для материала мы использовали готовую обученную на Национальном Корпусе Русского Языка модель от сообщества RusVectōrēs

Модель Word2Vec основана на нейронных сетях и позволяет представлять слова в виде векторов, учитывая семантическую составляющую. Это означает, что если мы возьмём два слова — например, «мама» и «папа», представим их в виде двух векторов и посчитаем косинус, значения будет близко к 1. Аналогично, у двух слов, не имеющих ничего общего по смыслу косинусная мера близка к 0.

Опишем функцию get_vector: она будет принимать список слов, распознавать для каждого часть речи, а затем получать и суммировать вектора — так мы сможем находить вектора не для одного слова, а для целых предложений и текстов.

def get_vector(word_list):
    vector = 0
    for word in word_list:
        pos = morph.parse(word)[0].tag.POS
        if pos == 'INFN':
            pos = 'VERB'
        if pos in ['ADJF', 'PRCL', 'ADVB', 'NPRO']:
            pos = 'NOUN'
        if word and pos:
            try:
                word_pos = word + '_' + pos
                this_vector = model.word_vec(word_pos)
                vector += this_vector
            except KeyError:
                continue
    return vector

Для каждой песни находим вектор и собираем соответствующий столбец в DataFrame:

vec_list = []
for word in df['text']:
    vec_list.append(get_vector(word.split()))
df['vector'] = vec_list

Теперь сравним вектора между собой, посчитав их косинусную близость. Те песни, у которых косинусная метрика выше 0,5 запомним отдельно — так мы получим самые близкие пары песен. Данные о сравнении векторов запишем в двумерный список result.

similar = dict()
result = []
for song_1, vector_1 in zip(df.name, df.vector):
    sub_list = []
    for song_2, vector_2 in zip(df.name.iloc[::-1], df.vector.iloc[::-1]):
        res = 1 - spatial.distance.cosine(vector_1, vector_2)
        if res > 0.5 and song_1 != song_2 and (song_1 + ' / ' + song_2 not in similar.keys() and song_2 + ' / ' + song_1 not in similar.keys()):
            similar[song_1 + ' / ' + song_2] = round(res, 2)
        sub_list.append(round(res, 2))
    result.append(sub_list)

Самые похожие треки соберём в отдельный DataFrame:

df_top_sim = pd.DataFrame()
df_top_sim['name'] = list(similar.keys())
df_top_sim['value'] = list(similar.values())
df_top_sim.sort_values(by='value', ascending=False)

И построим такой же bar chart:

colors = ['rgba(101,181,205,255)'] * 5

fig = go.Figure([go.Bar(x=df_top_sim['name'],
                        y=df_top_sim['value'],
                        marker_color=colors,
                        width=[0.4,0.4,0.4,0.4,0.4],
                        text=df_top_sim['value'],
                        textfont_color='white',
                        textposition='auto')])

fig.update_layout(
    title = 
        {'text':'<b>Топ-5 схожих песен</b><br><span style="color:#666666"></span>'},
    showlegend = False,
    height=650,
    font={
        'family':'Open Sans, light',
        'color':'black',
        'size':14
    },
    plot_bgcolor='rgba(0,0,0,0)',
    xaxis={'categoryorder':'total descending'}
)

fig.show()

Имея вектор каждой песни, давайте посчитаем вектор всего альбома — сложим вектора песен. Затем для такого вектора при помощи модели получим самые близкие по духу и смыслу слова.

def get_word_from_tlist(lst):
    for word in lst:
        word = word[0].split('_')[0]
        print(word, end=' ')

vec_sum = 0
for vec in df.vector:
    vec_sum += vec
sim_word = model.similar_by_vector(vec_sum)
get_word_from_tlist(sim_word)

небо тоска тьма пламень плакать горе печаль сердце солнце мрак

Наверное, это ключевой результат и описание альбома Земфиры всего лишь в 10 словах.

Наконец, построим общую тепловую карту, каждая ячейка которой — результат сравнения косинусной мерой текстов двух треков.

colorscale=[[0.0, "rgba(255,255,255,255)"],
            [0.1, "rgba(229,232,237,255)"],
            [0.2, "rgba(216,222,232,255)"],
            [0.3, "rgba(205,214,228,255)"],
            [0.4, "rgba(182,195,218,255)"],
            [0.5, "rgba(159,178,209,255)"],
            [0.6, "rgba(137,161,200,255)"],
            [0.7, "rgba(107,137,188,255)"],
            [0.8, "rgba(96,129,184,255)"],
            [1.0, "rgba(76,114,176,255)"]]

font_colors = ['black']
x = list(df.name.iloc[::-1])
y = list(df.name)
fig = ff.create_annotated_heatmap(result, x=x, y=y, colorscale=colorscale, font_colors=font_colors)
fig.show()

Результаты анализа и интерпретация данных

Давайте ещё раз посмотрим на всё, что у нас получилось — начнём с облака слов. Нетрудно заметить, что у слов «боль», «невозможно», «сорваться», «растерзаны», «сложно», «терпеть», «любить» размер весьма приличный — всё потому, что такие слова встречаются часто на протяжении всего текста песен:

Одной из самых «разнообразных» песен оказался сингл «крым» — в нём 74% уникальных слов. А в песне «снег идёт» слов совсем мало, поэтому большинство — 82% уникальны. Самой большой песней в альбоме получился трек «таблетки» — суммарно там около 150 слов.

Как было выяснено на прошлом графике, самый «динамичный» трек — «таблетки», целых 37 слов в минуту — практически по слову на каждые две секунды. А самый длинный трек — «абъюз», в нём же и согласно предыдущему графику практически самый низкий процент уникальных слов — 46%.

Топ-5 самых семантически похожих пар текстов:

Ещё мы получили вектор всего альбома и подобрали самые близкие слова. Только посмотрите на них — «тьма», «тоска», «плакать», «горе», «печаль», «сердце» — это же ведь и есть тот перечень слов, который характеризует лирику Земфиры!

небо тоска тьма пламень плакать горе печаль сердце солнце мрак

Финал — тепловая карта. По визуализации заметно, что практически все песни достаточно схожи между собой — косинусная мера у многих пар превышает значение в 0.4.

Выводы

В материале мы провели EDA всего текста нового альбома и при помощи предобученной модели Word2Vec доказали гипотезу — большинство песен «бордерлайна» пронизывают довольно мрачные и тексты. И это нормально, ведь Земфиру мы любим именно за искренность и прямолинейность.

Строим Motion chart по индексу Биг Мака на Python

Время чтения текста – 14 минут

Одной из самых знаменитых визуализаций, конечно же, является работа Hans Rosling и его знаменитое выступление про изменение уровня экономики в странах. Посмотрите это видео, если вдруг еще не видели:

Иногда у экономистов возникает желание сравнить уровень жизни в разных странах. Одной из таких опций считается индекс Биг Мака, учёт которого журнал «The Economist» ведёт с 1986 года. Основная мысль — изучить паритет покупательской способности в разных странах, максимально учитывая стоимость внутреннего производства. В производстве Биг Мака участвует стандартный набор ингредиентов, одинаковый во всех странах: сыр, мясо, хлеб и овощи. Считается, что все эти ингредиенты произведены локально, а, значит, цена на Биг Мак позволяет сравнивать покупательскую способность в разных странах на данный товар. Помимо этого, McDonalds — глобальный бренд и его рестораны есть в огромном количестве стран, что обеспечивает широкий охват Биг Маком.

Сегодня при помощи библиотеки Plotly построим Motion Chart для индекса Биг Мака. Мы, следуя за Hann Rosling, хотим получить Motion Chart, где по оси X будет численность населения, по Y — ВВП на душу населения в долларах, а размер точек будет обозначать индекс Биг Мака в данной стране. Кроме того, цвет точки будет обозначать континент, на котором расположилась страна.

Подготовка данных

Хотя «The Economist» ведёт учёт уже более 30 лет и делится своими наблюдениями в интернете, датасет содержит множество пропусков по разным странам. В то же время в датасете журнала не представлены названия континентов, к которым принадлежат страны и численность населения. Поэтому мы дополним данные журнала тремя другими датасетами, представленными в нашем репозитории.

Начнём с импорта библиотек:

import pandas as pd
from pandas.errors import ParserError
import plotly.graph_objects as go
import numpy as np
import requests
import io

Прочитаем все 4 датасета прямо из GitHub. Для этого опишем функцию, которая отправляет GET-запрос к csv-файлу и формирует из него DataFrame. По двум датасетам может возникнуть ошибка ParseError из-за наличия подписи в заглавии: пропустим несколько строк, если это произошло.

def read_raw_file(link):
    raw_csv = requests.get(link).content
    try:
        df = pd.read_csv(io.StringIO(raw_csv.decode('utf-8')))
    except ParserError:
        df = pd.read_csv(io.StringIO(raw_csv.decode('utf-8')), skiprows=3)
    return df

bigmac_df = read_raw_file('https://github.com/valiotti/leftjoin/raw/master/motion-chart-big-mac/big-mac.csv')
population_df = read_raw_file('https://github.com/valiotti/leftjoin/raw/master/motion-chart-big-mac/population.csv')
dgp_df = read_raw_file('https://github.com/valiotti/leftjoin/raw/master/motion-chart-big-mac/gdp.csv')
continents_df = read_raw_file('https://github.com/valiotti/leftjoin/raw/master/motion-chart-big-mac/continents.csv')

От датасета «The Economist» оставим только название страны, местную цену, курс доллара, код страны и дату записи. После оставим строки, записанные между 2005 и 2020 годом: данные за этот период наиболее полные. Последним действием посчитаем цену на Биг Мак в долларах: для этого цену в местной валюте поделим на валютный курс.

bigmac_df = bigmac_df[['name', 'local_price', 'dollar_ex', 'iso_a3', 'date']]
bigmac_df = bigmac_df[bigmac_df['date'] >= '2005-01-01']
bigmac_df = bigmac_df[bigmac_df['date'] < '2020-01-01']
bigmac_df['date'] = pd.DatetimeIndex(bigmac_df['date']).year
bigmac_df = bigmac_df.drop_duplicates(['date', 'name'])
bigmac_df = bigmac_df.reset_index(drop=True)
bigmac_df['dollar_price'] = bigmac_df['local_price'] / bigmac_df['dollar_ex']

Взглянем на наш DataFrame:

У нас есть датасет с континентами и странами, и нужно к bigmac_df добавить колонку «continents». Для удобства оставим от continents_df только колонки с названием континента и трёхбуквенным кодом страны, а затем для каждой страны в bigmac_df найдём континент. В случае, например, с Россией или с Турцией может произойти ошибка, ведь нельзя однозначно сказать, Европа это или Азия, так что такие страны будем определять как европейские.

continents_df = continents_df[['Continent_Name', 'Three_Letter_Country_Code']]
continents_list = []
for country in bigmac_df['iso_a3']:
    try:
        continents_list.append(continents_df.loc[continents_df['Three_Letter_Country_Code'] == country]['Continent_Name'].item())
    except ValueError:
        continents_list.append('Europe')
bigmac_df['continent'] = continents_list

Удалим использованные колонки, отсортируем для удобства по названиям стран и дате, переведём дату в числовой тип и снова взглянем на промежуточный результат:

bigmac_df = bigmac_df.drop(['local_price', 'iso_a3', 'dollar_ex'], axis=1)
bigmac_df = bigmac_df.sort_values(by=['name', 'date'])
bigmac_df['date'] = bigmac_df['date'].astype(int)

Заполним пробелы: по тем годам, где нет данных и установим цену в 0 долларов. Ещё придётся удалить Китайскую Республику — Тайвань: это частично признанное государство отсутствует в датасетах World Bank. А Арабские Эмираты повторяются дважды, с этим тоже могут возникнуть проблемы.

countries_list = list(bigmac_df['name'].unique())
years_set = {i for i in range(2005, 2020)}
for country in countries_list:
    if len(bigmac_df[bigmac_df['name'] == country]) < 15:
        this_continent = bigmac_df[bigmac_df['name'] == country].continent.iloc[0]
        years_of_country = set(bigmac_df[bigmac_df['name'] == country]['date'])
        diff = years_set - years_of_country
        dict_to_df = pd.DataFrame({
                      'name':[country] * len(diff),
                      'date':list(diff),
                      'dollar_price':[0] * len(diff),
                      'continent': [this_continent] * len(diff)
                     })
        bigmac_df = bigmac_df.append(dict_to_df)
bigmac_df = bigmac_df[bigmac_df['name'] != 'Taiwan']
bigmac_df = bigmac_df[bigmac_df['name'] != 'United Arab Emirates']

Осталось добавить ВВП на душу населения и численность населения из других датасетов. В обоих датасетах многие страны записаны иначе, поэтому пропишем словарь и переименуем все страны в обоих датасетах методом replace().

years = [str(i) for i in range(2005, 2020)]

countries_replace_dict = {
    'Russian Federation': 'Russia',
    'Egypt, Arab Rep.': 'Egypt',
    'Hong Kong SAR, China': 'Hong Kong',
    'United Kingdom': 'Britain',
    'Korea, Rep.': 'South Korea',
    'United Arab Emirates': 'UAE',
    'Venezuela, RB': 'Venezuela'
}
for key, value in countries_replace_dict.items():
    population_df['Country Name'] = population_df['Country Name'].replace(key, value)
    gdp_df['Country Name'] = gdp_df['Country Name'].replace(key, value)

Наконец, соберём данные по численности и ВВП за нужные года и добавим в основной DataFrame:

countries_list = list(bigmac_df['name'].unique())

population_list = []
gdp_list = []
for country in countries_list:
    population_for_country_df = population_df[population_df['Country Name'] == country][years]
    population_list.extend(list(population_for_country_df.values[0]))
    gdp_for_country_df = gdp_df[gdp_df['Country Name'] == country][years]
    gdp_list.extend(list(gdp_for_country_df.values[0]))
    
bigmac_df['population'] = population_list
bigmac_df['gdp'] = gdp_list
bigmac_df['gdp_per_capita'] = bigmac_df['gdp'] / bigmac_df['population']

В итоге получили такой датасет:

Формируем график в plotly

Логарифмируем значения по оси X. В Китае и Индии, например, население в 10 раз больше, чем в среднем в других странах: из-за этого получим сложно интерпретируемую визуализацию, в которой у нас будет много наблюдений около оси и несколько наблюдений справа. Логарифмирование — часто используемый экономистами прием для учета эффекта масштаба в данных.

fig_dict = {
    "data": [],
    "layout": {},
    "frames": []
}

fig_dict["layout"]["xaxis"] = {"title": "Численность населения", "type": "log"}
fig_dict["layout"]["yaxis"] = {"title": "ВВП на душу населения (в $)", "range":[-10000, 120000]}
fig_dict["layout"]["hovermode"] = "closest"
fig_dict["layout"]["updatemenus"] = [
    {
        "buttons": [
            {
                "args": [None, {"frame": {"duration": 500, "redraw": False},
                                "fromcurrent": True, "transition": {"duration": 300,
                                                                    "easing": "quadratic-in-out"}}],
                "label": "Play",
                "method": "animate"
            },
            {
                "args": [[None], {"frame": {"duration": 0, "redraw": False},
                                  "mode": "immediate",
                                  "transition": {"duration": 0}}],
                "label": "Pause",
                "method": "animate"
            }
        ],
        "direction": "left",
        "pad": {"r": 10, "t": 87},
        "showactive": False,
        "type": "buttons",
        "x": 0.1,
        "xanchor": "right",
        "y": 0,
        "yanchor": "top"
    }
]

Помимо кнопок у нас будет Slider, позволяющий получать данные за определённый год:

sliders_dict = {
    "active": 0,
    "yanchor": "top",
    "xanchor": "left",
    "currentvalue": {
        "font": {"size": 20},
        "prefix": "Год: ",
        "visible": True,
        "xanchor": "right"
    },
    "transition": {"duration": 300, "easing": "cubic-in-out"},
    "pad": {"b": 10, "t": 50},
    "len": 0.9,
    "x": 0.1,
    "y": 0,
    "steps": []
}

Для статичного графика до нажатия на кнопку «Start» возьмём данные за 2005 год и заполним ими поле data фигуры.

continents_list_from_df = list(bigmac_df['continent'].unique())
year = 2005
for continent in continents_list_from_df:
    dataset_by_year = bigmac_df[bigmac_df["date"] == year]
    dataset_by_year_and_cont = dataset_by_year[dataset_by_year["continent"] == continent]
    
    data_dict = {
        "x": dataset_by_year_and_cont["population"],
        "y": dataset_by_year_and_cont["gdp_per_capita"],
        "mode": "markers",
        "text": dataset_by_year_and_cont["name"],
        "marker": {
            "sizemode": "area",
            "sizeref": 200000,
            "size":  np.array(dataset_by_year_and_cont["dollar_price"]) * 20000000
        },
        "name": continent,
        "customdata": np.array(dataset_by_year_and_cont["dollar_price"]).round(1),
        "hovertemplate": '<b>%{text}</b>' + '<br>' +
                         'ВВП на душу населения: %{y}' + '<br>' +
                         'Численность населения: %{x}' + '<br>' +
                         'Стоимость Биг Мака: %{customdata}$' +
                         '<extra></extra>'
    }
    fig_dict["data"].append(data_dict)

А для анимации заполним поле frames. Каждый frame — данные за год с 2005 по 2019.

for year in years:
    frame = {"data": [], "name": str(year)}
    for continent in continents_list_from_df:
        dataset_by_year = bigmac_df[bigmac_df["date"] == int(year)]
        dataset_by_year_and_cont = dataset_by_year[dataset_by_year["continent"] == continent]

        data_dict = {
            "x": list(dataset_by_year_and_cont["population"]),
            "y": list(dataset_by_year_and_cont["gdp_per_capita"]),
            "mode": "markers",
            "text": list(dataset_by_year_and_cont["name"]),
            "marker": {
                "sizemode": "area",
                "sizeref": 200000,
                "size": np.array(dataset_by_year_and_cont["dollar_price"]) * 20000000
            },
            "name": continent,
            "customdata": np.array(dataset_by_year_and_cont["dollar_price"]).round(1),
            "hovertemplate": '<b>%{text}</b>' + '<br>' +
                             'ВВП на душу населения: %{y}' + '<br>' +
                             'Численность населения: %{x}' + '<br>' +
                             'Стоимость Биг Мака: %{customdata}$' +
                             '<extra></extra>'
        }
        frame["data"].append(data_dict)

    fig_dict["frames"].append(frame)
    slider_step = {"args": [
        [year],
        {"frame": {"duration": 300, "redraw": False},
         "mode": "immediate",
         "transition": {"duration": 300}}
    ],
        "label": year,
        "method": "animate"}
    sliders_dict["steps"].append(slider_step)

Наконец, создадим объект графика, поправим цвета, шрифты и добавим описание.

fig_dict["layout"]["sliders"] = [sliders_dict]

fig = go.Figure(fig_dict)

fig.update_layout(
    title = 
        {'text':'<b>Motion chart</b><br><span style="color:#666666"> Биг Мака для стран мира с 2005 по 2019 год </span>'},
    font={
        'family':'Open Sans, light',
        'color':'black',
        'size':14
    },
    plot_bgcolor='rgba(0,0,0,0)'
)
fig.update_yaxes(nticks=4)
fig.update_xaxes(tickfont=dict(family='Open Sans, light', color='black', size=12), nticks=4, gridcolor='lightgray', gridwidth=0.5)
fig.update_yaxes(tickfont=dict(family='Open Sans, light', color='black', size=12), nticks=4, gridcolor='lightgray', gridwidth=0.5)

fig.show()

В итоге получаем такой Motion Chart:

Полный код проекта доступен на GitHub

Создаём дашборд на Bootstrap (Часть 2)

Время чтения текста – 16 минут

В последнем материале мы подготовили базовый макет дашборда при помощи библиотеки dash-bootstrap-components с двумя графиками: scatter plot и российской картой, которые подробно разбирали ранее. Сегодня продолжим наполнять дашборд информацией: встроим в него таблицы и фильтр данных по пивоварням.

Получение таблиц

Сами таблицы будем описывать в макете в файле application.py, но информацию, которую они отображают лаконичнее будет получить в отдельном модуле. Создадим файл get_tables.py: в нём будет функция, передающая готовую таблицу класса Table библиотеки dbc в application.py. В этом материале мы опишем только таблицу лучших пивоварен России, но на GithHub будут представлены все три.

В таблицах по заведениям и пивоварням мы реализуем фильтр по городам, но изначально города в собранных с Untappd данных записаны на латинице. Для запросов мы будем переводить русскоязычные наименования городов на английский при помощи библиотеки Google Translate. Кроме того, одни и те же города могут называться по-разному — например, «Москва» на латинице где-то записана как «Moskva», а где-то как «Moscow». Для этого дополнительно настроим маппинг наименований города и заранее создадим словарь с корректными наименованиями основных городов. Он пригодится в самом конце.

import pandas as pd
import dash_bootstrap_components as dbc
from clickhouse_driver import Client
import numpy as np
from googletrans import Translator

translator = Translator()

client = Client(host='12.34.56.78', user='default', password='', port='9000', database='')

city_names = {
   'Moskva': 'Москва',
   'Moscow': 'Москва',
   'СПБ': 'Санкт-Петербург',
   'Saint Petersburg': 'Санкт-Петербург',
   'St Petersburg': 'Санкт-Петербург',
   'Nizhnij Novgorod': 'Нижний Новгород',
   'Tula': 'Тула',
   'Nizhniy Novgorod': 'Нижний Новгород',
}

Таблица лучших пивоварен

Таблица, о которой идёт речь в материале, будет показывать топ-10 лучших российских пивоварен с изменением рейтинга. То есть мы сравниваем данные за два периода: [30 дней назад; сегодня] и [60 дней назад; 30 дней назад] и смотрим, как менялось место пивоварни в рейтинге. Соответственно, мы опишем следующие колонки: место в рейтинге, название пивоварни, ассортимент сортов пива, рейтинг пивоварни на untappd, изменение места и количество чекинов у этой пивоварни.
Опишем функцию get_top_russian_breweries, которая отправляет запрос к Clickhouse, получает общий топ пивоварен России, формирует данные и возвращает готовый для вывода DataFrame. Отправим два запроса — топ пивоварен за последние 30 дней и топ пивоварен за предыдущие 30 дней. Следующий запрос будет отбирать лучшие пивоварни, основываясь на количестве отзывов о пиве данной пивоварни.


Забираем данные из базы

def get_top_russian_breweries(checkins_n=250):
   top_n_brewery_today = client.execute(f'''
      SELECT  rt.brewery_id,
              rt.brewery_name,
              beer_pure_average_mult_count/count_for_that_brewery as avg_rating,
              count_for_that_brewery as checkins FROM (
      SELECT           
              brewery_id,
              dictGet('breweries', 'brewery_name', toUInt64(brewery_id)) as brewery_name,
              sum(rating_score) AS beer_pure_average_mult_count,
              count(rating_score) AS count_for_that_brewery
          FROM beer_reviews t1
          ANY LEFT JOIN venues AS t2 ON t1.venue_id = t2.venue_id
          WHERE isNotNull(venue_id) AND (created_at >= (today() - 30)) AND (venue_country = 'Россия') 
          GROUP BY           
              brewery_id,
              brewery_name) rt
      WHERE (checkins>={checkins_n})
      ORDER BY avg_rating DESC
      LIMIT 10
      '''
   )

top_n_brewery_n_days = client.execute(f'''
  SELECT  rt.brewery_id,
          rt.brewery_name,
          beer_pure_average_mult_count/count_for_that_brewery as avg_rating,
          count_for_that_brewery as checkins FROM (
  SELECT           
          brewery_id,
          dictGet('breweries', 'brewery_name', toUInt64(brewery_id)) as brewery_name,
          sum(rating_score) AS beer_pure_average_mult_count,
          count(rating_score) AS count_for_that_brewery
      FROM beer_reviews t1
      ANY LEFT JOIN venues AS t2 ON t1.venue_id = t2.venue_id
      WHERE isNotNull(venue_id) AND (created_at >= (today() - 60) AND created_at <= (today() - 30)) AND (venue_country = 'Россия')
      GROUP BY           
          brewery_id,
          brewery_name) rt
  WHERE (checkins>={checkins_n})
  ORDER BY avg_rating DESC
  LIMIT 10
  '''
)

Формируем из полученных строк два DataFrame:

top_n = len(top_n_brewery_today)
column_names = ['brewery_id', 'brewery_name', 'avg_rating', 'checkins']

top_n_brewery_today_df = pd.DataFrame(top_n_brewery_today, columns=column_names).replace(np.nan, 0)
top_n_brewery_today_df['brewery_pure_average'] = round(top_n_brewery_today_df.avg_rating, 2)
top_n_brewery_today_df['brewery_rank'] = list(range(1, top_n + 1))

top_n_brewery_n_days = pd.DataFrame(top_n_brewery_n_days, columns=column_names).replace(np.nan, 0)
top_n_brewery_n_days['brewery_pure_average'] = round(top_n_brewery_n_days.avg_rating, 2)
top_n_brewery_n_days['brewery_rank'] = list(range(1, len(top_n_brewery_n_days) + 1))

А затем в итераторе считаем, как изменилось место за последнее время у пивоварни. Обработаем исключение на случай, если 60 дней назад этой пивоварни в нашей базе ещё не было.

rank_was_list = []
for brewery_id in top_n_brewery_today_df.brewery_id:
   try:
       rank_was_list.append(
           top_n_brewery_n_days[top_n_brewery_n_days.brewery_id == brewery_id].brewery_rank.item())
   except ValueError:
       rank_was_list.append('–')
top_n_brewery_today_df['rank_was'] = rank_was_list

Теперь пройдёмся по полученным колонкам с текущими местами и изменениями. Если они не пустые, то при положительном изменении добавим к записи стрелочку вверх. При отрицательном — стрелочку вниз.

diff_rank_list = []
for rank_was, rank_now in zip(top_n_brewery_today_df['rank_was'], top_n_brewery_today_df['brewery_rank']):
   if rank_was != '–':
       difference = rank_was - rank_now
       if difference > 0:
           diff_rank_list.append(f'↑ +{difference}')
       elif difference < 0:
           diff_rank_list.append(f'↓ {difference}')
       else:
           diff_rank_list.append('–')
   else:
       diff_rank_list.append(rank_was)

Наконец, разметим итоговый DataFrame и вставим в него колонку с текущим местом. При этом у топ-3 будет отображаться эмодзи с золотым кубком.

df = top_n_brewery_today_df[['brewery_name', 'avg_rating', 'checkins']].round(2)
df.insert(2, 'Изменение', diff_rank_list)
df.columns = ['НАЗВАНИЕ', 'РЕЙТИНГ', 'ИЗМЕНЕНИЕ', 'ЧЕКИНОВ']
df.insert(0, 'МЕСТО',
         list('🏆 ' + str(i) if i in [1, 2, 3] else str(i) for i in range(1, len(df) + 1)))

return df

#Выбор пивоварен с фильтром по городам
Одна из функций нашего дашборда — просмотр топа пивоварен по конкретному городу. Для корректной работы напишем скрипт, который для каждого из списка российских городов получает топ пивоварен по числу чекинов и записывает данные по каждому городу в отдельные csv-файлы. В сущности, он мало чем отличается от предыдущего — рассмотрим главные отличия.

Прежде всего, функция принимает конкретный город. Мы уже отметили, что города в базе данных записаны на латинице — поэтому сначала переводим наименование города. В случае с Санкт-Петербургом, Нижним Новгородом и Пермью придётся перевести вручную: например, Санкт-Петербург переводится в Google Translate как St. Petersburg вместо ожидаемого Saint Petersburg.

ru_city = venue_city
if ru_city == 'Санкт-Петербург':
   en_city = 'Saint Petersburg'
elif ru_city == 'Нижний Новгород':
   en_city = 'Nizhnij Novgorod'
elif ru_city == 'Пермь':
   en_city = 'Perm'
else:
   en_city = translator.translate(ru_city, dest='en').text

Следующее отличие — запрос к базе. Нам нужно добавить в него условие совпадения по городу, чтобы получать чекины только в запрошенном городе:

WHERE (rt.venue_city='{ru_city}' OR rt.venue_city='{en_city}')

Наконец, сформированный DataFrame мы не возвращаем, а сохраняем в директорию data/cities.

df = top_n_brewery_today_df[['brewery_name', 'venue_city', 'avg_rating', 'checkins']].round(2)
df.insert(3, 'Изменение', diff_rank_list)
df.columns = ['НАЗВАНИЕ', 'ГОРОД', 'РЕЙТИНГ', 'ИЗМЕНЕНИЕ', 'ЧЕКИНОВ']
df.to_csv(f'data/cities/{en_city}.csv', index=False)  # saving DF
print(f'{en_city}.csv updated!')

Обновление таблиц по расписанию

Наш дашборд будет использовать библиотеку apscheduler для вызова последней функции по расписанию и обновления таблиц по городам. Следующие строки добавим в файл application.py: scheduler будет обновлять данные для каждого города из списка all_cities ежедневно в 13:30 по МСК.

from apscheduler.schedulers.background import BackgroundScheduler
from get_tables import update_best_breweries

all_cities = sorted(['Москва', 'Сергиев Посад', 'Санкт-Петербург', 'Владимир',
             'Красная Пахра', 'Воронеж', 'Екатеринбург', 'Ярославль', 'Казань',
             'Ростов-на-Дону', 'Краснодар', 'Тула', 'Курск', 'Пермь', 'Нижний Новгород'])

scheduler = BackgroundScheduler()
@scheduler.scheduled_job('cron', hour=10, misfire_grace_time=30)
def update_data():
   for city in all_cities:
       update_best_breweries(city)
scheduler.start()

Формирование таблицы

Наконец, опишем заключительную функцию get_top_russian_breweries_table(venue_city, checkins_n=250) — она будет принимать город, количество чекинов и будет возвращать сформированную таблицу dbc. Второй параметр — checkins_n будет отсеивать пивоварни, у которых чекинов меньше значения этой переменной. Если город не указан, сразу вызываем ранее описанную get_top_russian_breweries(checkins_n) — она вернёт общую статистику за последнее время. В противном случае снова переводим города на латиницу.

if venue_city == None: 
   selected_df = get_top_russian_breweries(checkins_n)
else: 
   ru_city = venue_city
   if ru_city == 'Санкт-Петербург':
       en_city = 'Saint Petersburg'
   elif ru_city == 'Нижний Новгород':
       en_city = 'Nizhnij Novgorod'
   elif ru_city == 'Пермь':
       en_city = 'Perm'
   else:
       en_city = translator.translate(ru_city, dest='en').text

Читаем все строки из таблицы с нужным городом и проверяем количество чекинов каждой пивоварни. В самом начале материала мы завели словарь city_names. При помощи функции map() мы пишем лямбда-выражение, которое возвращает значение ключа словаря city_names только если входной аргумент из колонки df[‘ГОРОД’] совпадает с каким-либо из ключей в city_names. В случае, если совпадения не будет возвращает просто x во избежание np.Nan.

Например, для наименования «СПБ» в колонке df[‘ГОРОД’] вернётся значение «Санкт-Петербург», так как такой ключ есть в city_names. Для «Воронеж» название таким и останется, так как совпадающий ключ не найден. В конце удаляем возможные дубликаты из DataFrame, добавляем колонку с номером места пивоварни и забираем себе первые 10 строк — это и будет топ-10 пивоварен по нужному городу.

df = pd.read_csv(f'data/cities/{en_city}.csv')
df = df.loc[df['ЧЕКИНОВ'] >= checkins_n]
df['ГОРОД'] = df['ГОРОД'].map(lambda x: city_names[x] if (x in city_names) else x)
df.drop_duplicates(subset=['НАЗВАНИЕ', 'ГОРОД'], keep='first', inplace=True) 
df.insert(0, 'МЕСТО', list('🏆 ' + str(i) if i in [1, 2, 3] else str(i) for i in range(1, len(df) + 1)))
selected_df = df.head(10)

Вне зависимости от того, получали мы DataFrame общей функцией get_top_russian_breweries() или по конкретному городу, собираем таблицу, задаём стили и возвращаем готовый dbc-объект.


Вёрстка в Dash Bootstrap Components

table = dbc.Table.from_dataframe(selected_df, striped=False,
                                bordered=False, hover=True,
                                size='sm',
                                style={'background-color': '#ffffff',
                                       'font-family': 'Proxima Nova Regular',
                                       'text-align':'center',
                                       'fontSize': '12px'},
                                className='table borderless'
                                )

return table

Структура вёрстки

Опишем в application.py слайдер, таблицу и Dropdown-фильтр с выбором города.

О вёрстке дашборда при помощи Dash Bootstrap Components мы говорили в предыдущем материале цикла

checkins_slider_tab_1 = dbc.CardBody(
                           dbc.FormGroup(
                               [
                                   html.H6('Количество чекинов', style={'text-align': 'center'})),
                                   dcc.Slider(
                                       id='checkin_n_tab_1',
                                       min=0,
                                       max=250,
                                       step=25,
                                       value=250,  
                                       loading_state={'is_loading': True},
                                       marks={i: i for i in list(range(0, 251, 25))}
                                   ),
                               ],
                           ),
                           style={'max-height': '80px', 
                                  'padding-top': '25px'
                                  }
                       )

top_breweries = dbc.Card(
       [
           dbc.CardBody(
               [
                   dbc.FormGroup(
                       [
                           html.H6('Фильтр городов', style={'text-align': 'center'}),
                           dcc.Dropdown(
                               id='city_menu',
                               options=[{'label': i, 'value': i} for i in all_cities],
                               multi=False,
                               placeholder='Выберите город',
                               style={'font-family': 'Proxima Nova Regular'}
                           ),
                       ],
                   ),
                   html.P(id="tab-1-content", className="card-text"),
               ],
           ),
   ],
)

И для обновления таблицы по фильтру и слайдеру с минимальным количеством чекинов опишем callback с вызовом get_top_russian_breweries_table(city, checkin_n):

@app.callback(
   Output("tab-1-content", "children"), [Input("city_menu", "value"),
                                         Input("checkin_n_tab_1", "value")]
)
def table_content(city, checkin_n):
   return get_top_russian_breweries_table(city, checkin_n)

Готово! Напомню, в материале описан пример создания только одной таблицы. На данный момент дашборд помимо лучших пивоварен выдаёт лучшие и худшие сорта пива, а также средний рейтинг пива по регионам и отношение количества чекинов каждой пивоварни к её средней оценке.

Полный код проекта доступен на GitHub

Ранее Ctrl + ↓