Valiotti Analytics — построение аналитики для мобильных и digital-стартапов
    DataMarathon.ru — семидневный интенсив в области аналитики для начинающих

Парсим вакансии для аналитиков из Indeed

Время чтения текста – 8 минут

В этом материале мы расскажем, как парсить вакансии с сайта Indeed. Indeed — это крупнейший в мире поисковик вакансий. Этим текстом мы начинаем большой проект по анализу и визуализации показателей оплаты труда в области Data Science в разных странах.
Подобный анализ рынка вакансий, но только в России, мы проводили в материале Анализ рынка вакансий аналитики и BI: дашборд в Tableau, когда парсили данные с сайта HeadHunter.

А еще у нас можно почитать материал Парсим данные каталога сайта, используя Beautiful Soup и Selenium

Импорт библиотек
Библиотека fake_useragent имитирует реальный User-Agent, чтобы преодолеть защиту сайта от парсинга. Таким образом мы сможем пройти проверку HTTP заголовка User-Agent.
Модуль urllib.parse разбирает URL-адрес на компоненты и записывает его как кортеж. Он пригодится для перехода на карточки вакансий. BeautifulSoup поможет разобраться в структуре html-страницы и добыть нужную нам информацию.

import requests
from datetime import timedelta, datetime
import urllib.parse
from fake_useragent import UserAgent
from bs4 import BeautifulSoup
import pandas as pd
import time
from lxml.html import fromstring
from clickhouse_driver import Client
from clickhouse_driver import errors
import numpy as np
from funcs import check_title, get_skills_row, parse_salary, get_sheetname, create_table

Создадим таблицу в Clickhouse
Данные, которые мы собираемся собрать, будем хранить в базе Clickhouse.

create_table = '''CREATE TABLE if not exists indeed.vacancies (
    row_idx UInt16,
    query_string String,
    country String,
    title String,
    company String,
    city String,
    job_added Date,
    easy_apply UInt8,
    company_rating Nullable(Float32),
    remote UInt8,
    job_id String,
    job_link String,
    sheet String,
    skills String,
    added_date Date,
    month_salary_from_USD Float64,
    month_salary_to_USD Float64,
    year_salary_from_USD Float64,
    year_salary_to_USD Float64,
)
ENGINE = ReplacingMergeTree
SETTINGS index_granularity = 8192'''

Обход блокировок
Нам нужно обойти защиту Indeed и избежать блокировки по IP. Для этого используем анонимные прокси адреса на сайте free-proxy-list.net. Как собрать свежие прокси, мы писали в нашем предыдущем тексте «Пишем парсер свежих прокси на Python для Selenium». Прокси адреса мы запишем в массив, который понадобится в момент обращения к Indeed, когда запрос будет проверять User-Agent.

Данный метод удаляет IP из списка с прокси в том случае, если ответ от Indeed через него так и не пришел.

def remove_proxy_from_list_and_update_if_required(proxy):
    global _proxies
    _proxies.remove(proxy)
    if len(_proxies) == 0:
        update_proxy_list()

Функция, используя прокси, возвращает нам страницу Indeed, из которой мы впоследствии спарсим данные.

def get_page(updated_url, session):
    proxy = get_proxy()
    proxy_dict = {"http": proxy, "https": proxy}
    logger.info(f'try with proxy: {proxy}')
    try:
        session.proxies = proxy_dict
        return session.get(updated_url, timeout=15)
    except (requests.exceptions.RequestException, requests.exceptions.ProxyError, requests.exceptions.ConnectTimeout,
            requests.exceptions.ReadTimeout, requests.exceptions.SSLError,
            requests.exceptions.ConnectionError, url_ex.MaxRetryError, ConnectionResetError,
            socket.timeout, url_ex.ReadTimeoutError):
        remove_proxy_from_list_and_update_if_required(proxy)
        logger.info(f'try with proxy {proxy}')
        return get_page(updated_url, session)

Методы для парсера
Искомые данные нужно будет искать по тегам и атрибутам верстки с помощью BeautifulSoup. Мы заранее собрали ключевые слова, которые нас будут интересовать в вакансиях, и подготовили с ними отдельный датасет.

В карточках вакансий нет точной даты публикации, указано лишь сколько дней назад она была опубликована. Сохраним точную дату публикации в традиционном формате с помощью timedelta.

def raw_date_to_str(raw_date):
    raw_date = raw_date.lower()
    if '+' in raw_date or "более" in raw_date:
        delta = timedelta(days=32)
        return (datetime.now() - delta).strftime("%Y-%m-%d")
    else:
        parts = raw_date.split()
        for part in parts:
            if part.isdigit():
                delta = timedelta(days=part.isdigit())
                return (datetime.now() - delta).strftime("%Y-%m-%d")
    return ""

Сохраним id вакансии в системе Indeed. Подставляя id в URL страницы, мы сможем получить доступ к полному описанию вакансий.

def get_job_id_from_card(card):
    try:
        return card['id'].split('_')[1]
    except:
        return ""

Данный метод соберет названия вакансий.

def get_title_from_card(card):
    try:
        job_title = card.find('a', {'class': 'jobtitle'}).text
        return job_title.replace('\n', '')
    except:
        return ''

Аналогичным образом напишем методы, которые будут собирать данные о названии компании, времени публикации объявления, местоположении работодателя и рейтинге работодателя на портале.

URL сайта Indeed пишется для разных стран по-разному. Для США это будет просто indeed.com, а локализации для других стран получают префиксом xx.indeed.com. Список с префиксами мы собрали в массив заранее из https://opensource.indeedeng.io/api-documentation/docs/supported-countries/ списка Indeed.

def get_link_from_card(card, card_country):
    try:
        if card_country == 'us':
            return f"https://indeed.com{card.find('a', {'class': 'jobtitle'})['href']}"
        else:
            return f"https://{card_country}.indeed.com{card.find('a', {'class': 'jobtitle'})['href']}"
    except:
        return ""

Спарсим описание вакансии, которое можно найти по тегу ’summary’. Именно там содержатся требования, которые предъявляют к кандидату.

def get_summary_from_card_and_transform_to_skills(card):
    try:
        smr = card.find('div', {'class': 'summary'}).text
        return get_skills_row(smr)
    except:
        return ""
Необходимые hard-skills из описания вакансий будем сверять со списком 'skills'. 
skills = ["python", "tableau", "etl", "power bi", "d3.js", "qlik", "qlikview", "qliksense",
          "redash", "metabase", "numpy", "pandas", "congos", "superset", "matplotlib", "plotly",
          "airflow", "spark", "luigi", "machine learning", "amplitude", "sql", "nosql", "clickhouse",
          'sas', "hadoop", "pytorch", "tensorflow", "bash", "scala", "git", "aws", "docker",
          "linux", "kafka", "nifi", "ozzie", "ssas", "ssis", "redis", 'olap', ' r ', 'bigquery', 'api', 'excel']

Эта функция разобьет ’summary’ на слова пробелом и проверит их на соответствие нашему списку. В датасет будут возвращаться совпадения с нашим списком hard-skills.

def get_skills_row(summary):
    summary = summary.lower()
    row = []
    for sk in skills:
        if sk in summary:
            row.append(sk)
    return ','.join(row)

На выходе мы получим таблицу с примерно 30 тысячами строк.

Полный код проекта можно посмотреть в нашем репозитории на GitHub.

Нормализация данных через запрос в SQL

Время чтения текста – 8 минут

Главный принцип анализа данных GIGO (от англ. garbage in — garbage out, дословный перевод «мусор на входе — мусор на выходе») говорит нам о том, что ошибки во входных данных всегда приводят к неверным результатам анализа. От того, насколько хорошо подготовлены данные, зависят результаты всей вашей работы.

Например, перед нами стоит задача подготовить выборку для использования в алгоритме машинного обучения (модели k-NN, k-means, логической регрессии и др). Признаки в исходном наборе данных могут быть в разном масштабе, как, например, возраст и рост человека. Это может привести к некорректной работе алгоритма. Такого рода данные нужно предварительно масштабировать.

В данном материале мы рассмотрим способы масштабирования данных через запрос в SQL: масштабирование методом min-max, min-max для произвольного диапазона и z-score нормализация. Для каждого из методов мы подготовили по два примера написания запроса — один с помощью подзапроса SELECT, а второй используя оконную функцию OVER().

Для работы возьмем таблицу students с данными о росте учащихся.

name height
Иван 174
Петр 181
Денис 199
Ксения 158
Сергей 179
Ольга 165
Юлия 152
Кирилл 188
Антон 177
Софья 165

Min-Max масштабирование

Подход min-max масштабирования заключается в том, что данные масштабируются до фиксированного диапазона, который обычно составляет от 0 до 1. В данном случае мы получим все данные в одном масштабе, что исключит влияние выбросов на выводы.

Выполним масштабирование по формуле:

Умножаем числитель на 1.0, чтобы в результате получилось число с плавающей точкой.

SQL-запрос с подзапросом:

SELECT height, 
       1.0 * (height-t1.min_height)/(t1.max_height - t1.min_height) AS scaled_minmax
  FROM students, 
      (SELECT min(height) as min_height, 
              max(height) as max_height 
         FROM students
      ) as t1;

SQL-запрос с оконной функцией:

SELECT height, 
       (height - MIN(height) OVER ()) * 1.0 / (MAX(height) OVER () - MIN(height) OVER ()) AS scaled_minmax
  FROM students;

В результате мы получим переменные в диапазоне [0...1], где за 0 принят рост самого невысокого учащегося, а 1 рост самого высокого.

name height scaled_minmax
Иван 174 0.46809
Петр 181 0.61702
Денис 199 1
Ксения 158 0.12766
Сергей 179 0.57447
Ольга 165 0.2766
Юлия 152 0
Кирилл 188 0.76596
Антон 177 0.53191
Софья 165 0.2766

Масштабирование для заданного диапазона

Вариант min-max нормализации для произвольных значений. Не всегда, когда речь идет о масштабировании данных, диапазон значений находится в промежутке между 0 и 1.
Формула для вычисления в этом случае такая:

Это даст нам возможность масштабировать данные к произвольной шкале. В нашем примере пусть а=10.0, а b=20.0.

SQL-запрос с подзапросом:

SELECT height, 
       ((height - min_height) * (20.0 - 10.0) / (max_height - min_height)) + 10 AS scaled_ab
  FROM students,
      (SELECT MAX(height) as max_height, 
              MIN(height) as min_height
         FROM students  
      ) t1;

SQL-запрос с оконной функцией:

SELECT height, 
       ((height - MIN(height) OVER() ) * (20.0 - 10.0) / (MAX(height) OVER() - MIN(height) OVER())) + 10.0 AS scaled_ab
  FROM students;

Получаем аналогичные результаты, что и в предыдущем методе, но данные распределены в диапазоне от 10 до 20.

name height scaled_ab
Иван 174 14.68085
Петр 181 16.17021
Денис 199 20
Ксения 158 11.2766
Сергей 179 15.74468
Ольга 165 12.76596
Юлия 152 10
Кирилл 188 17.65957
Антон 177 15.31915
Софья 165 12.76596

Нормализация с помощью z-score

В результате z-score нормализации данные будут масштабированы таким образом, чтобы они имели свойства стандартного нормального распределения — среднее (μ) равно 0, а стандартное отклонение (σ) равно 1.

Вычисляется z-score по формуле:

SQL-запрос с подзапросом:

SELECT height, 
       (height - t1.mean) * 1.0 / t1.sigma AS zscore
  FROM students,
      (SELECT AVG(height) AS mean, 
              STDDEV(height) AS sigma
         FROM students
        ) t1;

SQL-запрос с оконной функцией:

SELECT height, 
       (height - AVG(height) OVER()) * 1.0 / STDDEV(height) OVER() AS z-score
  FROM students;

В результате мы сразу заметим выбросы, которые выходят за пределы стандартного отклонения.

name height zscore
Иван 174 0.01488
Петр 181 0.53582
Денис 199 1.87538
Ксения 158 -1.17583
Сергей 179 0.38698
Ольга 165 -0.65489
Юлия 152 -1.62235
Кирилл 188 1.05676
Антон 177 0.23814
Софья 165 -0.65489

Python и тексты нового альбома Земфиры: анализируем суть песен

Время чтения текста – 18 минут

Неделю назад вышёл первый за 8 лет студийный альбом Земфиры «Бордерлайн». К работе помимо рок-певицы приложили руку разные люди, в том числе и её родственники — рифф для песни «таблетки» написал её племянник из Лондона. Альбом получился разнообразным: например, песня «остин» посвящена главному персонажу игры Homescapes российской студии Playrix (кстати, посмотрите свежие Бизнес-секреты с братьями Бухманами, там они тоже про это рассказывают) — Земфире нравится игра, и для трека она связалась со студией. А сингл «крым» был написан в качестве саундтрека к новой картине соратницы Земфиры — Ренаты Литвиновой.

Послушать альбом в Apple Music / Яндекс.Музыке / Spotify

Тем не менее, дух всего альбома довольно мрачен — в песнях часто повторяются слова «боль», «ад», «бесишь» и прочие по смыслу. Мы решили провести разведочный анализ нового альбома, а затем при помощи модели Word2Vec и косинусной меры посмотреть на семантическую близость песен между собой и вычислить общее настроение альбома.

Для тех, кому скучно читать про подготовку данных и шаги анализа можно перейти сразу к результатам.

Подготовка данных

Для начала работы напишем скрипт обработки данных. Цель скрипта — из множества текстовых файлов, в каждом из которых лежит по песне, собрать единую csv-таблицу. При этом текст треков очищаем от знаков пунктуации и ненужных слов.

import pandas as pd
import re
import string
import pymorphy2
from nltk.corpus import stopwords

Создаём морфологический анализатор и расширяем список всего, что нужно отбросить:

morph = pymorphy2.MorphAnalyzer()
stopwords_list = stopwords.words('russian')
stopwords_list.extend(['куплет', 'это', 'я', 'мы', 'ты', 'припев', 'аутро', 'предприпев', 'lyrics', '1', '2', '3', 'то'])
string.punctuation += '—'

Названия песен приведены на английском — создадим словарь для перевода на русский и словарь, из которого позднее сделаем таблицу:

result_dict = dict()

songs_dict = {
    'snow':'снег идёт',
    'crimea':'крым',
    'mother':'мама',
    'ostin':'остин',
    'abuse':'абьюз',
    'wait_for_me':'жди меня',
    'tom':'том',
    'come_on':'камон',
    'coat':'пальто',
    'this_summer':'этим летом',
    'ok':'ок',
    'pills':'таблетки'
}

Опишем несколько функций. Первая читает целиком песню из файла и удаляет переносы строки, вторая очищает текст от ненужных символов и слов, а третья при помощи морфологического анализатора pymorphy2 приводит слова к нормальной форме. Модуль pymorphy2 не всегда хорошо справляется с неоднозначностью — для слов «ад» и «рай» потребуется дополнительная обработка.

def read_song(filename):
    f = open(f'{filename}.txt', 'r').read()
    f = f.replace('\n', ' ')
    return f

def clean_string(text):
    text = re.split(' |:|\.|\(|\)|,|"|;|/|\n|\t|-|\?|\[|\]|!', text)
    text = ' '.join([word for word in text if word not in string.punctuation])
    text = text.lower()
    text = ' '.join([word for word in text.split() if word not in stopwords_list])
    return text

def string_to_normal_form(string):
    string_lst = string.split()
    for i in range(len(string_lst)):
        string_lst[i] = morph.parse(string_lst[i])[0].normal_form
        if (string_lst[i] == 'аду'):
            string_lst[i] = 'ад'
        if (string_lst[i] == 'рая'):
            string_lst[i] = 'рай'
    string = ' '.join(string_lst)
    return string

Проходим по каждой песне и читаем файл с соответствующим названием:

name_list = []
text_list = []
for song, name in songs_dict.items():
    text = string_to_normal_form(clean_string(read_song(song)))
    name_list.append(name)
    text_list.append(text)

Затем объединяем всё в DataFrame и сохраняем в виде csv-файла.

df = pd.DataFrame()
df['name'] = name_list
df['text'] = text_list
df['time'] = [290, 220, 187, 270, 330, 196, 207, 188, 269, 189, 245, 244]
df.to_csv('borderline.csv', index=False)

Результат:

Облако слов по всему альбому

Начнём анализ с построения облака слов — оно отобразит, какие слова чаще всего встречаются в песнях. Импортируем нужные библиотеки, читаем csv-файл и устанавливаем конфигурации:

import nltk
from wordcloud import WordCloud
import pandas as pd
import matplotlib.pyplot as plt
from nltk import word_tokenize, ngrams

%matplotlib inline
nltk.download('punkt')
df = pd.read_csv('borderline.csv')

Теперь создаём новую фигуру, устанавливаем параметры оформления и при помощи библиотеки wordcloud отображаем слова с размером прямо пропорциональным частоте упоминания слова. Над каждым графиком дополнительно указываем название песни.

fig = plt.figure()
fig.patch.set_facecolor('white')
plt.subplots_adjust(wspace=0.3, hspace=0.2)
i = 1
for name, text in zip(df.name, df.text):
    tokens = word_tokenize(text)
    text_raw = " ".join(tokens)
    wordcloud = WordCloud(colormap='PuBu', background_color='white', contour_width=10).generate(text_raw)
    plt.subplot(4, 3, i, label=name,frame_on=True)
    plt.tick_params(labelsize=10)
    plt.imshow(wordcloud)
    plt.axis("off")
    plt.title(name,fontdict={'fontsize':7,'color':'grey'},y=0.93)
    plt.tick_params(labelsize=10)
    i += 1

EDA текстов альбома

Теперь проанализируем тексты песен — импортируем библиотеки для работы с данными и визуализации:

import plotly.graph_objects as go
import plotly.figure_factory as ff
from scipy import spatial
import collections
import pymorphy2
import gensim

morph = pymorphy2.MorphAnalyzer()

Сначала посчитаем число слов в каждой песне, число уникальных слов и процентное соотношение:

songs = []
total = []
uniq = []
percent = []

for song, text in zip(df.name, df.text):
    songs.append(song)
    total.append(len(text.split()))
    uniq.append(len(set(text.split())))
    percent.append(round(len(set(text.split())) / len(text.split()), 2) * 100)

А теперь составим из этого DataFrame и дополнительно посчитаем число слов в минуту для каждой песни:

df_words = pd.DataFrame()
df_words['song'] = songs
df_words['total words'] = total
df_words['uniq words'] = uniq
df_words['percent'] = percent
df_words['time'] = df['time']
df_words['words per minute'] = round(total / (df['time'] // 60))
df_words = df_words[::-1]

Данные хорошо бы визуализировать — построим две столбиковые диаграммы: одну для числа слов в песне, а другую для числа слов в минуту.

colors_1 = ['rgba(101,181,205,255)'] * 12
colors_2 = ['rgba(62,142,231,255)'] * 12

fig = go.Figure(data=[
    go.Bar(name='📝 Всего слов',
           text=df_words['total words'],
           textposition='auto',
           x=df_words.song,
           y=df_words['total words'],
           marker_color=colors_1,
           marker=dict(line=dict(width=0)),),
    go.Bar(name='🌀 Уникальных слов',
           text=df_words['uniq words'].astype(str) + '<br>'+ df_words.percent.astype(int).astype(str) + '%' ,
           textposition='inside',
           x=df_words.song,
           y=df_words['uniq words'],
           textfont_color='white',
           marker_color=colors_2,
           marker=dict(line=dict(width=0)),),
])

fig.update_layout(barmode='group')

fig.update_layout(
    title = 
        {'text':'<b>Соотношение числа уникальных слов к общему количеству</b><br><span style="color:#666666"></span>'},
    showlegend = True,
    height=650,
    font={
        'family':'Open Sans, light',
        'color':'black',
        'size':14
    },
    plot_bgcolor='rgba(0,0,0,0)',
)
fig.update_layout(legend=dict(
    yanchor="top",
    xanchor="right",
))

fig.show()
colors_1 = ['rgba(101,181,205,255)'] * 12
colors_2 = ['rgba(238,85,59,255)'] * 12

fig = go.Figure(data=[
    go.Bar(name='⏱️ Длина трека, мин.',
           text=round(df_words['time'] / 60, 1),
           textposition='auto',
           x=df_words.song,
           y=-df_words['time'] // 60,
           marker_color=colors_1,
           marker=dict(line=dict(width=0)),
          ),
    go.Bar(name='🔄 Слов в минуту',
           text=df_words['words per minute'],
           textposition='auto',
           x=df_words.song,
           y=df_words['words per minute'],
           marker_color=colors_2,
           textfont_color='white',
           marker=dict(line=dict(width=0)),
          ),
])

fig.update_layout(barmode='overlay')

fig.update_layout(
    title = 
        {'text':'<b>Длина трека и число слов в минуту</b><br><span style="color:#666666"></span>'},
    showlegend = True,
    height=650,
    font={
        'family':'Open Sans, light',
        'color':'black',
        'size':14
    },
    plot_bgcolor='rgba(0,0,0,0)'
)


fig.show()

Работа с Word2Vec моделью

При помощи модуля gensim загружаем модель, указывая на бинарный файл:

model = gensim.models.KeyedVectors.load_word2vec_format('model.bin', binary=True)

Для материала мы использовали готовую обученную на Национальном Корпусе Русского Языка модель от сообщества RusVectōrēs

Модель Word2Vec основана на нейронных сетях и позволяет представлять слова в виде векторов, учитывая семантическую составляющую. Это означает, что если мы возьмём два слова — например, «мама» и «папа», представим их в виде двух векторов и посчитаем косинус, значения будет близко к 1. Аналогично, у двух слов, не имеющих ничего общего по смыслу косинусная мера близка к 0.

Опишем функцию get_vector: она будет принимать список слов, распознавать для каждого часть речи, а затем получать и суммировать вектора — так мы сможем находить вектора не для одного слова, а для целых предложений и текстов.

def get_vector(word_list):
    vector = 0
    for word in word_list:
        pos = morph.parse(word)[0].tag.POS
        if pos == 'INFN':
            pos = 'VERB'
        if pos in ['ADJF', 'PRCL', 'ADVB', 'NPRO']:
            pos = 'NOUN'
        if word and pos:
            try:
                word_pos = word + '_' + pos
                this_vector = model.word_vec(word_pos)
                vector += this_vector
            except KeyError:
                continue
    return vector

Для каждой песни находим вектор и собираем соответствующий столбец в DataFrame:

vec_list = []
for word in df['text']:
    vec_list.append(get_vector(word.split()))
df['vector'] = vec_list

Теперь сравним вектора между собой, посчитав их косинусную близость. Те песни, у которых косинусная метрика выше 0,5 запомним отдельно — так мы получим самые близкие пары песен. Данные о сравнении векторов запишем в двумерный список result.

similar = dict()
result = []
for song_1, vector_1 in zip(df.name, df.vector):
    sub_list = []
    for song_2, vector_2 in zip(df.name.iloc[::-1], df.vector.iloc[::-1]):
        res = 1 - spatial.distance.cosine(vector_1, vector_2)
        if res > 0.5 and song_1 != song_2 and (song_1 + ' / ' + song_2 not in similar.keys() and song_2 + ' / ' + song_1 not in similar.keys()):
            similar[song_1 + ' / ' + song_2] = round(res, 2)
        sub_list.append(round(res, 2))
    result.append(sub_list)

Самые похожие треки соберём в отдельный DataFrame:

df_top_sim = pd.DataFrame()
df_top_sim['name'] = list(similar.keys())
df_top_sim['value'] = list(similar.values())
df_top_sim.sort_values(by='value', ascending=False)

И построим такой же bar chart:

colors = ['rgba(101,181,205,255)'] * 5

fig = go.Figure([go.Bar(x=df_top_sim['name'],
                        y=df_top_sim['value'],
                        marker_color=colors,
                        width=[0.4,0.4,0.4,0.4,0.4],
                        text=df_top_sim['value'],
                        textfont_color='white',
                        textposition='auto')])

fig.update_layout(
    title = 
        {'text':'<b>Топ-5 схожих песен</b><br><span style="color:#666666"></span>'},
    showlegend = False,
    height=650,
    font={
        'family':'Open Sans, light',
        'color':'black',
        'size':14
    },
    plot_bgcolor='rgba(0,0,0,0)',
    xaxis={'categoryorder':'total descending'}
)

fig.show()

Имея вектор каждой песни, давайте посчитаем вектор всего альбома — сложим вектора песен. Затем для такого вектора при помощи модели получим самые близкие по духу и смыслу слова.

def get_word_from_tlist(lst):
    for word in lst:
        word = word[0].split('_')[0]
        print(word, end=' ')

vec_sum = 0
for vec in df.vector:
    vec_sum += vec
sim_word = model.similar_by_vector(vec_sum)
get_word_from_tlist(sim_word)

небо тоска тьма пламень плакать горе печаль сердце солнце мрак

Наверное, это ключевой результат и описание альбома Земфиры всего лишь в 10 словах.

Наконец, построим общую тепловую карту, каждая ячейка которой — результат сравнения косинусной мерой текстов двух треков.

colorscale=[[0.0, "rgba(255,255,255,255)"],
            [0.1, "rgba(229,232,237,255)"],
            [0.2, "rgba(216,222,232,255)"],
            [0.3, "rgba(205,214,228,255)"],
            [0.4, "rgba(182,195,218,255)"],
            [0.5, "rgba(159,178,209,255)"],
            [0.6, "rgba(137,161,200,255)"],
            [0.7, "rgba(107,137,188,255)"],
            [0.8, "rgba(96,129,184,255)"],
            [1.0, "rgba(76,114,176,255)"]]

font_colors = ['black']
x = list(df.name.iloc[::-1])
y = list(df.name)
fig = ff.create_annotated_heatmap(result, x=x, y=y, colorscale=colorscale, font_colors=font_colors)
fig.show()

Результаты анализа и интерпретация данных

Давайте ещё раз посмотрим на всё, что у нас получилось — начнём с облака слов. Нетрудно заметить, что у слов «боль», «невозможно», «сорваться», «растерзаны», «сложно», «терпеть», «любить» размер весьма приличный — всё потому, что такие слова встречаются часто на протяжении всего текста песен:

Одной из самых «разнообразных» песен оказался сингл «крым» — в нём 74% уникальных слов. А в песне «снег идёт» слов совсем мало, поэтому большинство — 82% уникальны. Самой большой песней в альбоме получился трек «таблетки» — суммарно там около 150 слов.

Как было выяснено на прошлом графике, самый «динамичный» трек — «таблетки», целых 37 слов в минуту — практически по слову на каждые две секунды. А самый длинный трек — «абъюз», в нём же и согласно предыдущему графику практически самый низкий процент уникальных слов — 46%.

Топ-5 самых семантически похожих пар текстов:

Ещё мы получили вектор всего альбома и подобрали самые близкие слова. Только посмотрите на них — «тьма», «тоска», «плакать», «горе», «печаль», «сердце» — это же ведь и есть тот перечень слов, который характеризует лирику Земфиры!

небо тоска тьма пламень плакать горе печаль сердце солнце мрак

Финал — тепловая карта. По визуализации заметно, что практически все песни достаточно схожи между собой — косинусная мера у многих пар превышает значение в 0.4.

Выводы

В материале мы провели EDA всего текста нового альбома и при помощи предобученной модели Word2Vec доказали гипотезу — большинство песен «бордерлайна» пронизывают довольно мрачные и тексты. И это нормально, ведь Земфиру мы любим именно за искренность и прямолинейность.

Экспорт исторических данных Apple Health в Google Sheets

Время чтения текста – 9 минут

Для устройств на базе iOS и watchOS существует приложение Health, которое ежедневно записывает все данные о здоровье носителя и синхронизирует их со сторонними приложениями. Все эти данные в любой момент можно получить прямо из приложения в виде XML-документа. Сегодня мы выгрузим исторические данные о здоровье из приложения Apple Health, обработаем их и отправим в Google Sheets для анализа и визуализации в будущем.

Экспорт архива из приложения

Зайдите в приложение Health на iPhone. Нажмите на аватарку своего профиля в верхнем правом углу — откроется меню приложения.

Внизу нажмите на кнопку «Экспортировать медданные». Через некоторое время откроется меню экспорта — отправьте архив себе на компьютер любым способом, можно по AirDrop или даже по почте в письме самому себе. Из архива нужен только один файл — «экспорт.xml». Достаньте его и положите в папку с ноутбуком jupyter.

Парсер XML в DataFrame

При помощи библиотеки XML составляем дерево на основе документа из Health. Собирать в словарь будем следующие атрибуты: тип, единица измерения, дата создания, дата начала, дата конца, значение. Проходим по всему дереву и отправляем полученные значения атрибутов в records_dict.

from xml.etree import ElementTree
import pandas as pd
import datetime

tree = ElementTree.parse('экспорт.xml')
root = tree.getroot()
records = root.findall('Record')

records_dict = {
    'type':[],
    'unit':[],
    'creationDate':[],
    'startDate':[],
    'endDate':[],
    'value':[]
}

for record in records:
    for attribute in records_dict.keys():
        attribute_value = record.get(attribute)
        records_dict[attribute].append(attribute_value)

События записаны в нечитабельном виде — для перевода составим специальный словарь с нужными типами, где ключ — старое название, а значение — новое. Мы возьмём только 11 событий: минуты осознанности, дистанция на велосипеде, дистанция заплыва, дистанция ходьбы и бега, пройдено пролётов, пульс, пульс в покое, шаги, активная энергия, энергия покоя и средний пульс при ходьбе.

types_dict = {
    'HKCategoryTypeIdentifierMindfulSession': 'Mindful Session',
    'HKQuantityTypeIdentifierDistanceCycling': 'Cycling Distance',
    'HKQuantityTypeIdentifierDistanceSwimming': 'Swimming Distance',
    'HKQuantityTypeIdentifierDistanceWalkingRunning': 'Walking + Running Distance',
    'HKQuantityTypeIdentifierFlightsClimbed': 'Flights Climbed',
    'HKQuantityTypeIdentifierHeartRate': 'Heart Rate',
    'HKQuantityTypeIdentifierRestingHeartRate': 'Resting Heart Rate',
    'HKQuantityTypeIdentifierStepCount': 'Steps',
    'HKQuantityTypeIdentifierActiveEnergyBurned': 'Active Calories',
    'HKQuantityTypeIdentifierBasalEnergyBurned': 'Resting Calories',
    'HKQuantityTypeIdentifierWalkingHeartRateAverage': 'Walking Heart Rate Average'
}

Для минут осознанности в поле значения записей нет — мы сами посчитаем позже это поле как разницу даты окончания и начала события. Разница будет представлена как timedelta, поэтому напишем функцию перевода timedelta в минуты:

def td_to_m(td):
    seconds = td.seconds + td.days * 24 * 60 * 60
    return seconds // 60

Из словаря создаём DataFrame и задаём названия колонок. Оставляем только те 11 событий, которые есть в словаре types_dict и приводим все колонки к нужным типам данных:

df = pd.DataFrame(records_dict)
df.columns = ['type', 'unit', 'date', 'start', 'end', 'value']
df = df[df['type'].isin(types_dict.keys())]
df['value'] = df['value'].astype(float)
df['date'] = df['date'].astype('datetime64')
df['date'] = df['date'].dt.date
df['start'] = df['start'].astype('datetime64')
df['end'] = df['end'].astype('datetime64')
df['unit'] = df['unit'].astype(str)

Данные Health при экспорте никак не группируются — мы сделаем это самостоятельно. DataFrame можно поделить на три: в первом будут события, у которых единица измерения «количество в минуту» — для таких событий нужно искать среднее значение. В другой группе будут минуты осознанности — считаем число минут в каждой записи и суммируем. В последней группе находятся все остальные записи, связанные с количественными событиями — шаги, дистанция ходьбы и бега и так далее. Их тоже суммируем.

df_1 = df[df['unit'] == 'count/min']
df_1 = df_1.groupby(by=['date', 'type', 'unit'], as_index=False).agg({'start':'min',
                                                                      'end':'max',
                                                                      'value':'mean'})

df_2 = df[df['type'] == 'HKCategoryTypeIdentifierMindfulSession']
df_2['value'] = df_2['end'] - df_2['start']
df_2['value'] = df_2['value'].map(td_to_m)
df_2 = df_2.groupby(by=['date', 'type', 'unit'], as_index=False).agg({'start':'min',
                                                                     'end':'max',
                                                                     'value':'sum'})
df_3 = df[(df['unit'] != 'count/min') & (df['type'] != 'HKCategoryTypeIdentifierMindfulSession')]
df_3 = df_3.groupby(by=['date', 'type', 'unit'], as_index=False).agg({'start':'min',
                                                                      'end':'max',
                                                                      'value':'sum'})
df = pd.concat([df_1, df_2, df_3])

Дату создания записи переводим в строковый тип. Все наименования типов событий заменяем согласно словарю types_dict. В переменную dates записываем все уникальные даты.

df['date'] = df['date'].astype(str)
df['type'] = df['type'].apply(lambda x: types_dict[x])
dates = df['date'].unique()

В результате нужен словарь с колонкой даты и отдельной колонкой под каждое из 11 событий:

result = {
    'date': [],
    'Steps': [],
    'Walking + Running Distance': [],
    'Swimming Distance': [],
    'Cycling Distance': [],
    'Resting Calories': [],
    'Active Calories': [],
    'Flights Climbed': [],
    'Heart Rate': [],
    'Resting Heart Rate': [],
    'Walking Heart Rate Average': [],
    'Mindful Session': []
}

Проходим по каждой дате и получаем кусок DataFrame за эту дату. Добавляем её в словарь и проходим по каждому ключу, пробуя добавить значение:

for date in dates:
    part = df[df['date'] == date]
    result['date'].append(date)
    for key in result.keys():
        if key == 'date':
            continue
        else:
            field = 'value'
        try:
            result[key].append(part[part['type'] == key][field].values[0])
        except IndexError:
            result[key].append(None)

Из полученного словаря создаём DataFrame, округляем всё до двух знаков после запятой и сортируем по дате:

result_df = pd.DataFrame(result)
result_df = result_df.round(2)
result_df = result_df.sort_values(by='date')

В результате получается такая таблица с историческими данными по 11 событиям:

Экспорт DataFrame в Google Sheets

Для экспорта в Google Docs необходим сервисный аккаунт и json-файл с ключом. О том, как его получить, мы писали в материале «Собираем данные по рекламным кампаниям ВКонтакте»

Создайте новый документ в Google Sheets. Весь DataFrame можно вставить одним действием при помощи методов библиотеки gspread. Импортируйте её, а также укажите идентификатор документа и json-файл с ключом. В методе get_worksheet указывается порядковый номер листа в файле начиная с нуля.

import pandas as pd
import gspread
from gspread_dataframe import set_with_dataframe
gc = gspread.service_account(filename='serviceAccount.json')
sh = gc.open_by_key('1osKA63LQkUC0FC0eIZ63jEJwn1TeIkUvqCV6ur')
worksheet = sh.get_worksheet(0)

В итоге в Google Spreadsheets появится такая таблица:

А в следующем материале посмотрим, как наладить ежедневный экспорт данных Здоровья в эту таблицу при помощи шорткатов и Google AppScript!

 Нет комментариев    164   3 мес   Analytics Engineering   apple health   Data Analytics   pandas   python

Матемаркетинг: современный облачный Data Stack

Время чтения текста – 1 минута

С 9 по 13 ноября в онлайн-формате прошёл Матемаркетинг — крупнейшая конференция по маркетинговой аналитике в России, и в этом году мне посчастливилось стать одним из спикеров. Я выступил с двумя докладами, в этом материале обсудим первый — о современном облачном Data Stack.

Внутри объясняю подход к проектированию аналитической инфраструктуры, обосновываю использование Clickhouse при построении облачной аналитики и рассказываю о его же нюансах и говорю про Redash с точки зрения инструмента для визуализации.

 Нет комментариев    47   4 мес   Analytics Engineering   clickhouse   Data Analytics   data stack   reda
Ранее Ctrl + ↓