14 заметок с тегом

bi

Позднее Ctrl + ↑

Конференция Coalesce от dbt: что посмотреть?

Время чтения текста – 4 минуты

С 7 по 11 декабря проходила конференция Coalesce, о которой я рассказывал ранее. В этом году все организаторы решили проводить конференции по 5 дней с кучей докладов.

С одной стороны это плюс — ощущение, что информации много и можно выбрать, что интересно. С другой стороны такое количество информации несколько изматывает, потому что часто по названию доклада не очень понятно насколько он окажется полезным и интересным. Мне все же кажется, что более трех дней для конференции это много, т. к. интерес аудитории теряется, да и необходимость заниматься своими личными и профессиональными делами не может испариться из-за события, которое хоть и в онлайне, но занимает твое внимание.

Однако мне удалось посмотреть большую часть докладов, кое-что пролистывая. Для начала коротко в целом о впечатлениях: очень круто изучать доклады с подобной конференции как Coalesce, потому что речь идет в основном о современных инструментах и облачных решениях. Почти в каждом докладе можно услышать про Redshift / BigQuery / Snowflake, а с точки зрения BI: Mode / Tableau / Looker / Metabase. В центре всего, разумеется, dbt.

Мой шорт-лист докладов, которые рекомендую изучить:

  1. dbt 101 — вводный доклад и интро в то, что такое dbt и как его используют
  2. Kimball in the context of the modern data warehouse: what’s worth keeping, and what’s not — интересный и очень-очень спорный доклад, который вызвал массу вопросов в slack dbt. Вкратце, автор предлагает перейти на «широкие» аналитические таблицы и отказаться от нормальных форм всюду.
  3. Building a robust data pipeline with dbt, Airflow, and Great Expectations — в докладе про небезынтересный инструмент greatexpectations, суть которого в валидации данных
  4. Orchestrating dbt with Dagster — мне было несколько скучновато слушать, но если хочется познакомиться с Dagster — самое то
  5. Supercharging your data team — ребята сделали обертку к dbt, назвали dbt executor 9000 и рассказывают о нем
  6. Presenting: SQLFluff — про очень классную штуку SQLFluff, которая автоматически редактирует SQL-код согласно канонам
  7. Quickstart your analytics with Fivetran dbt packages — из доклада можно узнать, что такое Fivetran и как его используют совместно с dbt
  8. Perfect complements: Using dbt with Looker for effective data governance — про взаимодействие dbt и looker, про различия и схожие части инструментов

Обзор дашборда в Redash

Время чтения текста – 2 минуты

О создании credentials и работе с Google Spreadsheets API мы рассказывали в материале «Собираем данные по рекламным кампаниям ВКонтакте»

В этот раз в цикле материалов по BI-системам рассмотрим Redash: open source инструмент, представляющий собой SQL-консоль, который можно совершенно бесплатно развернуть у себя на сервере и подключить в качестве датасорса множество баз данных (включая Clickhouse!) или другой источник по API, например, Google Sheets.

В видео обсудим плюсы и минусы Redash, посмотрим, как создавать отчёты и дашборды при помощи визуализаций запросов, подключить датасорсы, реализовать фактоиды, визуализацию Word Cloud и прочие аналогии графиков оригинального макета.

Внутри команды мы оценили дашборд в Redash и получили следующие средние оценки (1 — худшая оценка, 10 — лучшая):

  1. Отвечает ли заданным вопросам — 7,3
  2. Порог входа в инструмент — 7,5
  3. Функциональность инструмента — 5,5
  4. Удобство пользования — 7,5
  5. Соответствие результата макету — 6,0
  6. Визуальная составляющая — 5,2

Итог: дашборд получает 6,5 баллов из 10. Посмотрите на полученный результат.

Обзор дашборда в SAP Analytics Cloud

Время чтения текста – 2 минуты

В прошлом гайде по BI-системам мы рассмотрели PowerBI, а в этот раз поговорим о дашборде в SAP Analytics Cloud, который для нас построил ведущий BI консультант SAPRUN Алексей Салынин.

В видео рассказываем, как в SAP создавать новый источник данных, реализовать Tree Map, встроить графики в таблицы, настроить предпросмотр на мобильных устройствах и как работать с умным помощником Smart Insight.

Вместе с Алексеем (его оценки в скобках) мы оценили дашборд внутри команды и получили такие средние оценки:

  1. Отвечает ли заданным вопросам — 9,8 (10)
  2. Порог входа в инструмент — 6,5 (7)
  3. Функциональность инструмента — 9,8 (9)
  4. Удобство пользования — 8,2 (8)
  5. Соответствие результата макету — 9,3 (10)
  6. Визуальная составляющая — 8,6 (9)

Итог — дашборд в SAP Analytics Cloud получает 8,71 балл из 10. Посмотрите на полученный результат.

Обзор дашборда в PowerBI

Время чтения текста – 1 минута

Продолжаем цикл материалов о BI-системах: сегодня рассмотрим дашборд, который собран в PowerBI по датасету SuperStore Sales. Изучим, как подключать данные к системе, настраивать кастомные цвета для визуализаций и создавать новые меры, реализовать переключение между графиками при помощи закладок и с какими сложностями столкнулись в процессе построения дашборда.

Внутри команды мы оценили дашборд и получили следующие средние оценки (1 — худшая оценка, 10 — лучшая):

  1. Отвечает ли заданным вопросам — 9,8
  2. Порог входа в инструмент — 3,0
  3. Функциональность инструмента — 9,5
  4. Удобство пользования — 7,5
  5. Соответствие результата макету — 9,5
  6. Визуальная составляющая — 8,8

Итог — дашборд PowerBI получает 8,0 баллов из 10. Посмотрите на полученный результат.

А что вы думаете о получившимся дашборде? Поставьте свои оценки в нашем Telegram-канале!

Обзор дашборда в Tableau

Время чтения текста – 2 минуты

В прошлый раз мы разобрались с постановкой задачи, построили макет и поставили цель спроектировать дашборд в Tableau по датасету SuperStore Sales, который поможет понять среди каких регионов, продуктовых групп и клиентских сегментов формируется прибыль и каковы общие показатели деятельности за прошедшее время.

В видео рассказываю весь процесс создания дашборда в первом рассматриваемом инструменте — Tableau: как мы подготавливали данные, создавали отчёты, верстали дашборд, с какими сложностями и правками столкнулись, а также как опубликовать его на сервере Tableau Public и насколько результат соответствует поставленной задаче.

Мы оценили внутренней командой дашборд по критериям и получили следующие средние оценки (1 — худшая оценка, 10 — лучшая):

  1. Отвечает ли заданным вопросам — 10,0

  2. Порог входа в инструмент — 5,5

  3. Функциональность инструмента — 9,0

  4. Удобство пользования — 8,5

  5. Соответствие результата макету — 10,0

  6. Визуальная составляющая — 9,7

Итог — дашборд на Tableau получает 8,8 баллов из 10 от нашей команды. Посмотрите на полученный результат.

А что вы думаете о получившимся дашборде? Поставьте свои оценки в нашем Telegram-канале!

Ранее Ctrl + ↓