Valiotti Analytics — построение аналитики для мобильных и digital-стартапов
    DataMarathon.ru — семидневный интенсив в области аналитики для начинающих
Позднее Ctrl + ↑

Обзор дашборда в Excel

Время чтения текста – 1 минута

На Excel я собаку съел: проработав много лет аналитиком, при помощи этого инструмента я автоматизировал маркетинговую отчетность, рассчитывал всевозможные репорты и рекламную эффективность, писал макросы, а однажды даже автоматизировал подключение MS Excel к базе данных Oracle через TextBox, в котором был записан текст запроса: получилась собственная SQL-консоль вроде Redash.

В сегодняшнем видео на примере датасета SuperStore я покажу, что Excel — не просто калькулятор строк и столбцов, но и мощнейший аналитический инструмент, сопоставимый с промышленными BI-системами.

Внутри команды мы оценили дашборд и получили следующие средние оценки (1 — худшая оценка, 10 — лучшая):

Отвечает ли заданным вопросам — 8,4
Порог входа в инструмент — 7,0
Функциональность инструмента — 8,0
Удобство пользования — 6,0
Соответствие результата макету — 8,4
Визуальная составляющая — 7,4

Итог: дашборд в Excel получает 7,5 баллов из 10. Посмотрите на полученный результат.

 Нет комментариев    70   4 мес   bi   BI guide   BI-инструменты   excel

Сравнение программ обучения Tableau и PowerBI

Время чтения текста – 11 минут

В этом году мне удалось пройти сертификацию Tableau Desktop Associate. И когда я думал о том, как к ней лучше подготовиться, я наткнулся на курсы elearning от Tableau, которые ещё и оказались бесплатными на 90 дней.

Я решил, что нельзя упускать такую возможность и решил пройти все три блока Fundamentals в бодром темпе. Когда получил сертификацию мне стало интересно, какие программы обучения предлагают другие производители BI-инструментов. И первым делом пошёл изучать обучающие материалы по PowerBI. В этой небольшой статье хочу попытаться сравнить программы обучения от Tableau и PowerBI.

Дисклеймер: в итоге у меня сформировалось предвзятое положительное отношение к Tableau, поэтому сторонникам PowerBI данная статья может оказаться не по нраву и в чем-то окажется субъективной (справедливости ради слова похвалы PowerBI тоже присутствуют).

В результате изучения обучающих материалов я, пожалуй, наконец, могу сформулировать, почему я все же голосую двумя руками за Tableau как за инструмент анализа и визуализации данных.

Прежде всего, существует огромная пропасть в подходе к материалам и проверке их понимания. Несмотря на то, что обучающие материалы Tableau носят более технический характер и в меньшей степени уделяют внимание дизайну, обучаясь через их видео, всё же можно делать отличные рабочие визуализации. Что и говорить, после прохождения всех трёх ступеней обучения Tableau появляется желание творить новые крутые отчёты с использованием всех LOD Expressions, Filter Actions и создавать удобные интерфейсы. А вот после просмотра всех материалов по PowerBI остаётся один вопрос: зачем я потратил своё время? Для объективности сравнения и те, и другие материалы я изучал на английском языке. Думаю, в индустрии это стандарт, поскольку открыв 2-3 ссылки на русском понимаешь, что переведено это пяткой левой ноги.

Если отбросить эмоции, есть несколько ключевых вещей, которые оказались принципиальны для меня в результате изучения материалов.

Так выглядит хороший дашборд по версии Microsoft

Качество подготовки контента и примеров в обучении

Если посмотреть на логику изложения обучающих видео Tableau и вопросов в формате квиза, которые задаются в конце прохождения материала, начинаешь проникаться идеей софта. Но в случае с PowerBI тебя ждёт тотальное разочарование. Взгляните, к примеру, на материал об обнаружении выбросов, тут Microsoft предлагает построить диаграмму scatter plot и визуально определить все выбросы на глаз.

Дизайн отчётов и дашбордов

Существуют достаточно объективные придирки к обучающим материалам Tableau на тему дизайна графиков и элементов управления, но всё равно они сделаны аккуратно и красиво. А теперь взгляните на тот ужас, который предлагает в качестве результата работы аналитика Microsoft. А вот хорошо построенный дашборд по версии Microsoft.

Проверка полученных знаний из обучения

Во время обучения Tableau ты сразу же после небольшой лекции учишься применению куска изученного материала на практике. Нужно нажать конкретные кнопки в интерфейсе, чтобы решить задачу. В PowerBI предполагаются «лабораторные работы», которые должны были запуститься с удалённой машины. Мне не удалось начать ни одну лабораторную работу, я трижды писал в саппорт, саппорт так и не смог решить мою проблему, поэтому поэкспериментировать с заданиями в PowerBI у меня так и не вышло.

Результат работы аналитика по версии Microsoft

Следующие пункты больше относятся к самому софту, чем к программам обучения.

Кроссплатформенность

Я давно работаю с Tableau, и 4 года назад пересел на Mac. После перехода с Windows мой опыт использования Tableau никак не изменился: по сути, Tableau развивался, а я вместе с ним, но при этом ключевые элементы интерфейса команда не меняла. Я экспериментировал с построением отчётов в PowerBI, но мне были неудобны различные архаизмы Microsoft типа публикаций через какой-нибудь share-портал, где обязательно нужно иметь учётную запись MS и настраивать что-то через администратора. Вся эта головная боль жутко утомляет.

Однако гораздо больше меня поразил тот факт, что я не могу воспользоваться PowerBI на Mac. Вообще, совсем никак, и это принципиальная позиция Microsoft, которая в ближайшем будущем не планируется меняться. С моей точки зрения, такое программное обеспечение относится к сегменту B2B в области аналитики, предполагает подключение ко всевозможным СУБД, но отрицает факт существования альтернативной операционной системы, на которой потенциальное n-ное количество консультантов могут продвигать и использовать PowerBI как аналитический инструмент.

Наверняка есть рациональные причины, связанные с тем, что любой софт от Microsoft не очень здорово работает на Mac, но факт остаётся фактом: для меня софт становится недоступным. Тем не менее, я не искал лёгких путей и поставил PowerBI через Parallels для того, чтобы всё-таки честно посмотреть ещё раз на инструмент с учётом обучающих материалов.

Опции визуализации

И в Tableau, и в PowerBI очень крутые опции визуализации данных. К слову, в данном разрезе PowerBI всё же предлагает видео и чуть больше информации, чем обычно. Так что по этой части инструменты представлены одинаково хорошо.

Функциональность

А тут хочется отдать должное функциональности PowerBI. Действительно, багаж инструментов даже без подключения сторонних библиотек крайне широкий. К примеру, автоматическая кластеризация, Decomposition Tree, Data Profiler или Настройка фильтров по графику

Синтаксис внутреннего языка

Для работы с PowerBI следует выучить DAX. Это не язык программирования, а функциональный язык. Что-то своё написать не получится, но оно и не понадобится — внутри уже реализованы все функции, которыми нужно только научиться правильно пользоваться. Microsoft неплохо рассказывает про DAX в мануале. Определение новой меры на языке DAX выглядит так:

Revenue YoY % =
DIVIDE(
	[Revenue]
		- CALCULATE(
			[Revenue],
			SAMEPERIODLASTYEAR('Date'[Date])
	),
	CALCULATE(
		[Revenue],
		SAMEPERIODLASTYEAR('Date'[Date])
	)
)

Подготовка данных к анализу

Внутри PowerBI есть фича Unpivot, которая позволяет привести данные, разложенные по столбцам с временными периодами к форме, удобной для использования в сводных таблицах:

Впрочем, в ETL-инструменте для очистки и предобработки данных Tableau Prep такое тоже реализовано

Выводы:

1) Программы обучения построены совершенно по-разному, методология погружения в инструмент от Tableau намного продуманнее и эффективнее. Есть возможность сразу же получить практический опыт решения задач и получить обратную связь (хоть и автоматическую).
2) Дизайн отчетов и дашбордов в обучающих материалах от Microsoft выглядит едва ли профессионально, у Tableau реализация выглядит на порядок лучше
3) Реализация проверки знаний от Microsoft ниже плинтуса (совершенно формальные тесты как в плохой школе), у Tableau реализовано хорошо, погружаешься в задачу, думаешь над ответом и решаешь.
4) Кроссплатформенность явно не является коньком PowerBI, однако в случае Tableau это отличное конкурентное преимущество
5) Функциональность и возможности инструментов, разумеется, находятся на высоком уровне, и в чем-то победу одерживает PowerBI.

Посмотрите наши обзоры дашбордов в Tableau, PowerBI, Google Data Studio, SAP Analytics Cloud, QlikSense, Redash и в других BI-системах.

 Нет комментариев    134   4 мес   bi   BI-инструменты   powerbi   tableau

Обзор дашборда в Google DataStudio

Время чтения текста – 1 минута

В прошлом гайде по BI-системам мы рассмотрели Redash, а в этот раз поговорим о дашборде, построенном при помощи Google DataStudio. Пройдёмся по результату и посмотрим, как подключать в системе датасорсы из Google SpreadSheets или других источников, добавлять новые фактоиды, фильтры и настраивать данные и визуализации.

Внутри команды мы оценили дашборд и получили следующие средние оценки (1 — худшая оценка, 10 — лучшая):

  1. Отвечает ли заданным вопросам — 8,7
  2. Порог входа в инструмент — 7,0
  3. Функциональность инструмента — 7,5
  4. Удобство пользования — 6,5
  5. Соответствие результата макету — 8,7
  6. Визуальная составляющая — 7,8

Итог: дашборд в Google DataStudio получает 7,7 баллов из 10. Посмотрите на полученный результат.

 Нет комментариев    45   4 мес   bi   BI guide   BI-инструменты   datastudio

Конференция Coalesce от dbt: что посмотреть?

Время чтения текста – 4 минуты

С 7 по 11 декабря проходила конференция Coalesce, о которой я рассказывал ранее. В этом году все организаторы решили проводить конференции по 5 дней с кучей докладов.

С одной стороны это плюс — ощущение, что информации много и можно выбрать, что интересно. С другой стороны такое количество информации несколько изматывает, потому что часто по названию доклада не очень понятно насколько он окажется полезным и интересным. Мне все же кажется, что более трех дней для конференции это много, т. к. интерес аудитории теряется, да и необходимость заниматься своими личными и профессиональными делами не может испариться из-за события, которое хоть и в онлайне, но занимает твое внимание.

Однако мне удалось посмотреть большую часть докладов, кое-что пролистывая. Для начала коротко в целом о впечатлениях: очень круто изучать доклады с подобной конференции как Coalesce, потому что речь идет в основном о современных инструментах и облачных решениях. Почти в каждом докладе можно услышать про Redshift / BigQuery / Snowflake, а с точки зрения BI: Mode / Tableau / Looker / Metabase. В центре всего, разумеется, dbt.

Мой шорт-лист докладов, которые рекомендую изучить:

  1. dbt 101 — вводный доклад и интро в то, что такое dbt и как его используют
  2. Kimball in the context of the modern data warehouse: what’s worth keeping, and what’s not — интересный и очень-очень спорный доклад, который вызвал массу вопросов в slack dbt. Вкратце, автор предлагает перейти на «широкие» аналитические таблицы и отказаться от нормальных форм всюду.
  3. Building a robust data pipeline with dbt, Airflow, and Great Expectations — в докладе про небезынтересный инструмент greatexpectations, суть которого в валидации данных
  4. Orchestrating dbt with Dagster — мне было несколько скучновато слушать, но если хочется познакомиться с Dagster — самое то
  5. Supercharging your data team — ребята сделали обертку к dbt, назвали dbt executor 9000 и рассказывают о нем
  6. Presenting: SQLFluff — про очень классную штуку SQLFluff, которая автоматически редактирует SQL-код согласно канонам
  7. Quickstart your analytics with Fivetran dbt packages — из доклада можно узнать, что такое Fivetran и как его используют совместно с dbt
  8. Perfect complements: Using dbt with Looker for effective data governance — про взаимодействие dbt и looker, про различия и схожие части инструментов
 Нет комментариев    33   5 мес   bi   BI-инструменты   dbt   sql

Обзор дашборда в Redash

Время чтения текста – 2 минуты

О создании credentials и работе с Google Spreadsheets API мы рассказывали в материале «Собираем данные по рекламным кампаниям ВКонтакте»

В этот раз в цикле материалов по BI-системам рассмотрим Redash: open source инструмент, представляющий собой SQL-консоль, который можно совершенно бесплатно развернуть у себя на сервере и подключить в качестве датасорса множество баз данных (включая Clickhouse!) или другой источник по API, например, Google Sheets.

В видео обсудим плюсы и минусы Redash, посмотрим, как создавать отчёты и дашборды при помощи визуализаций запросов, подключить датасорсы, реализовать фактоиды, визуализацию Word Cloud и прочие аналогии графиков оригинального макета.

Внутри команды мы оценили дашборд в Redash и получили следующие средние оценки (1 — худшая оценка, 10 — лучшая):

  1. Отвечает ли заданным вопросам — 7,3
  2. Порог входа в инструмент — 7,5
  3. Функциональность инструмента — 5,5
  4. Удобство пользования — 7,5
  5. Соответствие результата макету — 6,0
  6. Визуальная составляющая — 5,2

Итог: дашборд получает 6,5 баллов из 10. Посмотрите на полученный результат.

 1 комментарий    133   5 мес   bi   BI guide   BI-инструменты   redash
Ранее Ctrl + ↓