Граф телеграм-каналов по теме аналитики

Время чтения текста – 4 минуты

Авторы самых разных блогов в телеграме часто публикуют подборки любимых каналов, которыми они хотят поделиться со своей аудиторией. Идея, конечно, не новая, но я решил не просто составить рейтинг интересных аналитических телеграм-блогов, а решить эту задачу аналитически.

В рамках текущего курса моей учебы, я изучаю много современных подходов к анализу и визуализации данных. В самом начале курса было разминочное упражнение: объектно-ориентированное программирование на Python для сбора и итеративного построения графа с TMDB API. В задаче этот метод применяется для построения графа связи актеров, где связь — игра в одном и том же фильме. Но я решил, что можно применить его и к другой задаче: построению графа связей аналитического сообщества.

Поскольку последнее время мой временной ресурс особенно ограничен, а аналогичную задачу для курса я уже выполнил, то я решил передать эти знания кому-то еще, кто интересуется аналитикой. К счастью, в этот момент, ко мне в личку постучался кандидат на вакансию младшего аналитика данных — Андрей. Он сейчас находится в процессе постижения всех тонкостей аналитики, поэтому мы договорились на стажировку, в рамках которой Андрей спарсил данные с telegram-каналов.

Основной задачей Андрея был сбор всех текстов с телеграм-канала Интернет-аналитика, выделение каналов, на которые ссылался Алексей Никушин, сбор текстов из этих телеграм-каналов и ссылок на этих каналах. Под “ссылкой” подразумевается любое упоминание канала: через @, через ссылку или репостом. В результате парсинга, у Андрея получилось два файла: nodes и edges.
Теперь я представлю вам граф, который получился у меня на основе этих данных и прокомментирую результаты.

Пользуясь случаем, хочу выразить мое почтение команде karpov.courses, поскольку у Андрея отличное знание языка Python!

В результате топ-10 каналов по показателю degree (количество связей) выглядит так:

  1. Интернет-аналитика
  2. Reveal The Data
  3. Инжиниринг Данных
  4. Data Events
  5. Datalytics
  6. Чартомойка
  7. LEFT JOIN
  8. Epic Growth
  9. RTD: ссылки и репосты
  10. Дашбордец

По-моему, получилось супер-круто и визуально интересно, а Андрей — большой молодец! Кстати, он тоже начал свой канал ”Это разве аналитика?”, где публикуются новости аналитики.

Забегая вперед: у этой задачи имеется продолжение. С помощью Марковской цепи мы смоделировали в каком канале окажется пользователь, если будет переходить итеративно по всем упоминаниям в каналах. Получилось очень интересно, но об этом мы расскажем в следующий раз!

Поделиться
Отправить
Запинить
 752   25 дн   Data Analytics   python
Популярное